论文部分内容阅读
TC4合金因综合性能优良,在航空航天及民用工业领域应用广泛,但是耐磨损性能较差,极大的限制了TC4合金在高磨损条件下的使用,目前主要利用在TC4表面制备耐磨性好的碳化物、氮化物和硼化物层来解决。立方氮化硼(cubic Boron Nitride,简称c-BN)是一种硬度高、热稳定性好的陶瓷材料,使用钎焊法制备的c-BN制品,结合强度高,使用寿命长,得到了工业界的一致好评。本文探索使用AgCuInTi、TiZrCuNi两种活性钎料在TC4表面利用真空钎焊法制备c-BN耐磨层。研究了钎料的性能、钎焊温度、真空度、保温时间等因素对钎料与c-BN颗粒之间焊接性的影响规律,对钎料与c-BN颗粒界面的微观结构及形成机制,钎料与TC4基体界面的元素扩散与分布进行了分析,并对制备的c-BN耐磨层的结合强度和耐磨性能进行了测定。实验结果表明:AgCuInTi钎料在真空度高于10-2Pa,钎焊温度750℃、保温5min,TiZrCuNi钎料在真空度高于10-2Pa,钎焊温度950℃、保温3min的工艺条件下制备的c-BN耐磨层表面平整美观,结合紧密;钎料中的Ti元素在钎焊过程中向c-BN颗粒表面富集并与c-BN颗粒表面B、N元素发生反应,生成了TiB2、TiN,实现了钎料与c-BN颗粒的化学冶金结合;AgCuIn Ti钎料与TC4基体界面处,Ag、Cu、Ti元素含量呈现梯度分布。TiZrCuNi钎料与TC4基体界面处,Ti、Zr、Cu元素含量呈现梯度分布,并向TC4基体中发生了少量的扩散,TC4基体中的Ti元素向钎料一侧扩散并少量溶解;不同c-BN体积分数的c-BN耐磨层试样的结合强度随着c-BN颗粒体积含量的增加而降低,磨损量随着c-BN颗粒体积含量的增加,先减少后增加,在c-BN体积分数为50%左右时,磨损量最小,耐磨性能佳。