论文部分内容阅读
随着微光学元件在现代通讯、军事应用、空间技术、超精加工、信息处理、生物医学及娱乐消费等众多领域中的广泛应用,与微光学领域相关的设计、制作与应用技术的研究受到越来越多的重视。本文主要针对微光学技术发展的瓶颈问题——器件制作进行重点研究,并初步探讨了微光学器件的设计与应用。本文的主要研究内容和结论有: 1.在全面分析了现有衍射光学标/矢量理论的基础上,提出了一种简单通用的光程差积分法,可用于复杂面形衍射器件的标量分析。 (1) 通过与角谱分析法和严格耦合波分析法之间计算结果的对比,证明了光程差积分法在标量领域的有效性; (2) 利用光程差积分法设计了一种新型同面相位补偿等腰闪耀光栅,解决了异面相位补偿二次衍射及加工对准的难题,并采用时域有限差分法验证了设计结果的正确性。 2.首次提出了彩色等效灰阶细分扩展实现掩模曝光深度精细控制的方法。 (1) 通过对掩模曝光深度与曝光光强之间的关系分析,得出等效灰阶细分扩展的必要性和扩展需求; (2) 提出了两种彩色等效灰度的颜色选择方法:测试选取法和解析计算法; (3) 针对彩色胶片制作模拟掩模易受外部环境影响及重复性不好的缺点,首次提出了彩色数字掩模,并以三彩色LCD(Liquid Crystal Display)组合彩色数字掩模制作为例,给出了3LCD组合方法及灰阶细分扩展计算公式。 3.首次建立了一套基于DMD(Digital Micromirror Device)的微光学数字化灰度掩模制作系统。利用实时并行直写数字掩模精缩曝光技术,提高了掩模制作的速度和分辨率,获得了较好的实验结果。 4.基于DMD数字化灰度掩模制作系统,首次提出了以下一系列适用于数字灰度掩模制作的新技术: (1) 数字移动掩模技术。数字移动掩模可用于制作柱透镜、正弦光栅、大数值孔径微透镜阵列等。建立了一个非整数周期移动曝光累积能量模型和一个多周期掩模阵列移动曝光边框效应模型,并给出了仿真和实验结果; (2) 数字旋转掩模技术。数字旋转掩模可用于制作大数值孔径微透镜、圆对称整形器件、锥形棱镜等。以几种常用微光学器件为例,构建了旋转掩模的数学模型并分别给出了仿真和实验结果; (3) 数字分形掩模技术。掩模分形可用于解决精缩投影系统入瞳透镜孔径有限导致的边缘能量损失。本文首次提出了多种数字掩模分形方法,如周期放大法、台阶分