论文部分内容阅读
随着城市化进程的加快,道路车流量不断增加,交通拥堵问题日趋严重。采用区域交通智能控制及优化技术提高交通效率已成为当前的研究热点。针对现有区域交通信号优化控制研究的不足,本文提出了一种基于相位差协调的区域车辆延误模型,采用混沌遗传粒子群优化算法,对区域内各个交叉口的交通信号配时方案协调优化控制,能有效降低区域内车辆的平均延误时间,提高交通效率。主要研究内容如下:首先,根据区域交通流的动态特点,提出了一种基于相位差协调控制的区域车辆延误模型及优化算法。将区域延误分为外部进口道延误和内部进口道延误两种情况进行分析,引入相位差协调机制,建立车辆延误与公共周期、绿信比、相位差的关系模型。根据模型的高维多变量特点,提出了一种混沌遗传算法及其协调优化。仿真实验验证表明,该模型及算法能够有效减少车辆延误,提高交通效率。其次,针对上述区域交通优化协调控制的实时性、准确性要求,进一步提出了一种混沌遗传粒子群优化算法。以传统粒子群算法为主体,采用Tent映射产生大量粒子,挑选优质粒子作为初始种群,提高粒子的质量;迭代过程中,按照适应度值将粒子群进行划分,优质部分采用粒子群算法更新速度和位置,劣质部分采用个体与群体极值的算术交叉操作和保留精英个体的变异策略扩大全局搜索范围。仿真实验表明,该算法具有更强的寻优能力,能快速准确搜索到最优配时方案,满足区域协调控制的实时性、准确性要求。最后,基于VISSIM-MATLAB构建了一个区域交通协调优化控制仿真系统。在VISSIM中构建区域交通路网模型,在MATLAB中实现协调优化控制,通过COM接口进行两者之间的信息传输,实现了一个区域交通路网协调优化控制的闭环仿真系统,为区域交通信号优化控制提供了新的测试方法。通过实际路网的微观仿真实验,验证了本文所提出的区域交通协调优化控制模型及方法能有效减少区域交通延误,提高路网交通效率。