【摘 要】
:
基于气溶胶和云的米散射回波,相干多普勒测风激光雷达可以在晴空环境实现精确的风速探测,已被用于航空安全保障、风力发电、极端天气预警、大气污染监测和边界层动力学研究等领域。然而过去往往把来自降水粒子的回波看作风速探测的干扰信号,忽略了相干多普勒激光雷达在探测降水方面的潜力。本文发展了基于1.5μm相干多普勒激光雷达光谱分析的降水和气溶胶探测技术和应用。提出了基于多普勒谱宽等参数的降水识别方法,完善了基
论文部分内容阅读
基于气溶胶和云的米散射回波,相干多普勒测风激光雷达可以在晴空环境实现精确的风速探测,已被用于航空安全保障、风力发电、极端天气预警、大气污染监测和边界层动力学研究等领域。然而过去往往把来自降水粒子的回波看作风速探测的干扰信号,忽略了相干多普勒激光雷达在探测降水方面的潜力。本文发展了基于1.5μm相干多普勒激光雷达光谱分析的降水和气溶胶探测技术和应用。提出了基于多普勒谱宽等参数的降水识别方法,完善了基于相干多普勒激光雷达的雨滴谱分布等降水参数的反演方法,并且首次报道和分析了基于相干多普勒激光雷达观测的降水融化层现象。论文的主要工作如下:1.回顾了降水微物理参数和粒子的光散射理论。基于气溶胶、云雾和降水粒子的典型尺寸分布和复折射率参数,使用Mie散射理论模拟计算了它们在0.3~2.5μm波长范围内的后向散射系数、消光系数和激光雷达比等光学统计参数。从理论上论证了激光雷达同时探测气溶胶和降水粒子信号的可行性。2.介绍了自研的300μJ大脉冲能量相干多普勒激光雷达系统。提出针对时变直流噪声的修正算法和稳健的水平风反演方法,消除了对后续参数反演的影响,提高了激光雷达的数据反演精度和弱信号探测能力。此外还分析了频谱展宽的因素,并基于载噪比计算了气溶胶衰减后向散射系数。3.提出基于多普勒谱宽等参数的降水事件识别方法,该方法的准确性和适用性显著高于以往研究中基于垂直速度识别的方法。进而通过分析VAD扫描得到的双峰频谱,在降雨期间同时反演了风速和雨速。4.基于相干多普勒激光雷达的垂直观测数据,借助雨滴下落速度与其尺寸的关系,反演得到了雨滴谱分布。反演中使用的雨滴后向散射截面通过理论计算得到,并考虑了雨滴的非球形效应。通过构建包含了窗效应的气溶胶信号卷积模型,提高了迭代去卷积反演雨滴反射率谱的精确度和稳健性。首次对比了多普勒激光雷达和微雨雷达反演的雨滴谱、平均雨速、雨滴质量加权直径等参数。指出了激光雷达对小雨滴浓度的反演精度高于微波雷达和地面雨滴谱仪。5.首次报道了基于相干多普勒激光雷达的降水融化层探测,其结果得到了微雨雷达和多普勒天气雷达的验证。具体现象包括回波信号暗带、谱宽亮带、偏度符号转变等。通过理论分析解释了由于液态水的吸收效应导致的1.5μm波长激光雷达与过去报道的基于较短波长激光雷达探测结果之间的差异。
其他文献
一维量子多体物理在凝聚态物理、冷原子物理、量子信息等领域发挥着重要的作用。起初,对一维系统的研究主要集中在理论上,但随着实验技术的进步,越来越多的实验平台,诸如超冷原子光晶格、离子阱、超导量子比特等体系,都实现了对维度受限系统的模拟。这使得一维量子多体物理也成为实验上的一个研究热点。量子多体物理问题一般都很难解析求解,因此人们发展了大量数值方法,例如量子蒙特卡罗(Quantum Monte Car
在三维几何研究领域,几何表示是重要的研究课题。对三维几何对象来说,不同的三维表示可能适合不同的任务情形;反过来,一些特定的任务也需要提出有针对性的三维几何表示。首先,对于单个的物体,如何表示其三维形状有多种方式,如网格、点云、体素、多视角图像、深度图像等等。其次,对于有潜在对应关系的多个三维物体,如何表示其间的形变使其合理配准是一个重要的问题,这对于很多衍生任务都很关键,如跟踪、重建等。针对上述的
钢铁结构件在大气环境中的腐蚀问题严重影响设施的使用寿命并带来巨大的经济损失,因此迫切需要提高钢材在服役大气环境中的耐蚀性。对于钢材耐蚀性的评估和保护性锈层的研究往往基于长期的室外暴露和室内加速腐蚀实验,对钢材大气腐蚀初期腐蚀演化的关注较少,尚无系统地对典型大气环境下钢材初期动力学演化和锈层演化进行研究。而时间因素可以很大程度上影响锈层组分及含量,甚至决定中间或次要化合物的出现或消失,这些腐蚀产物的
在全球“碳中和”背景下,储能产业迎来重大机遇。钒电池,作为一种电化学储能技术,因安全性高、循环寿命长等优势有望成为大规模、长时间储能的首选方案。目前,钒电池产业的全面商业化仍然受到高昂储能成本的限制。提高电池性能,进而增加电池功率/能量密度,被认为是降低储能成本的有效措施。碳基多孔电极是钒电池的关键组件,为钒离子的电化学反应提供场所,对钒电池性能起到了决定性作用。然而,碳基电极固有的催化活性欠佳、
等离子体控制系统(PCS)是托卡马克装置的关键子系统之一,控制等离子体放电全过程并提供装置安全的第一级保护。中国聚变工程实验堆(CFETR)PCS作为CFETR关键研发任务之一,目前处于详细设计阶段。CFETRPCS由实时控制软硬件基础架构和装置特定的控制算法构成,通过在高性能实时框架中开发集成复杂丰富的控制算法满足装置的高参数运行控制要求。传统的控制算法开发集成基于纯文本和命令行方式,要求开发人
模拟自然光合作用将二氧化碳转化成高经济价值的化学品或者化学燃料是人类摆脱对化石能源的依赖,实现可持续发展的重要手段之一。而二氧化碳的光转化过程的实现高度依赖于催化剂。设计开发稳定、高效的二氧化碳还原光催化剂一直是这一领域研究的重点。然而,较低的催化转化效率是光催化剂面向工业规模应用进一步发展的掣肘。一般来说,从催化剂的角度出发,提高光催化二氧化碳还原的效率主要从以下几个方面入手,第一,增强催化剂对
在常见的固体掺杂发光研究中,根据不同发光中心的发光规律,常常需要开展基于材料发光行为的性质研究以及应用探索。这其中既包括对新型的发光材料的研发、也需要进行发光方案的设计与优化。除此之外,为了满足发光材料的不同使用要求,对材料发光性能的改善和精确调控在发光功能材料的应用中也占据着越来越重要的地位。在众多的发光激活离子之中,稀土离子与过渡金属离子是光致发光现象中最为常见与典型的两类发光中心。一方面,各
低温真空系统是中性束注入器(Neutral Beam Injector,NBI)的子系统之一,负责提供束生成与传输过程中所需真空梯度的分布环境,良好的真空环境对提高束的中性化效率和降低再电离损失有关键性作用。随着核聚变装置的不断发展,高中性化效率的负离子源中性束注入器成为未来发展的必然趋势。聚变堆负离子源中性束注入器(Negative Neutral Beam Injector,NNBI)的低温真
低活化铁素体/马氏体(RAFM)钢因其具有良好的热物理性能、抗中子辐照性能以及成熟的产业化基础,被认为是核聚变反应堆包层首选结构材料。然而,RAFM钢在应用和研究中依然面临着诸多问题。一方面,存在明显的高温软化效应,这严重阻碍了其在高温(如550℃以上)下的应用。为满足未来商用聚变反应堆更高服役温度的要求,不仅需要进一步优化挖掘RAFM钢的性能潜力,也需要重视具有性能优势的高熵合金的研发。另一方面
随着城镇化发展和工业、农业产业结构的调整,采矿污染、垃圾焚烧、污水危害、尾气排放、化肥滥用等生产生活方式造成了当地土地生态环境的破坏,土壤污染尤其是重金属元素污染引起的地质环境问题受到了社会广泛的关注。重金属元素超标是我国商品粮基地土壤污染的主要问题之一,直接制约着我国农用地土地质量、土地资源科学开发、高标准基本农田建设,威胁着粮食安全和人体健康。因此开展农用地土壤元素的分布规律、土壤中多元素耦合