论文部分内容阅读
本文针对当前多微处理器多层结构的船舶机舱自动监控系统存在的系统结构复杂、设备互操作性差、系统维护和扩展不便、缺乏对系统状态信息进行智能预测分析等有待进一步研究的问题,对船舶机舱自动监控系统的硬件和软件进行了分析,提出了一种基于现场总线技术的船舶机舱智能监控系统的设计方案。 利用现场总线技术,建立由管理计算机和智能节点组成的两层网络结构,取消原系统中间层的通信转发站,数据采集和通信由安装在现场的智能节点完成,简化了系统结构,增强了系统的可靠性。并对基于LonWorks现场总线的监控系统各主要功能模块进行了设计。 采用模块化、通用化的软件设计思想,提出利用数据库技术管理系统监测参数的方案,设计了多种用于参数显示的控件,使系统监控软件的组态和维护容易,增强了系统的通用性、灵活性和可扩展性。 提出一种结构简单、学习速度快捷、适合于动态过程在线多步预测分析的DRNN预测模型及其在线学习的TD-DBP复合学习算法。解决了非线性动态过程基于前馈网络或反馈网络的预测模型需要事先确定系统模型阶数的问题。 把基于人工神经网络的预测分析模块集成到船舶机舱监控系统软件中,为船舶机舱监控系统增加对监测参数在线动态趋势分析的功能,提高监控系统的可靠性和安全性。 对本文提出的设计方案,在上海海运学院自动化机舱实验中心,通过安装调试,取得了令人满意的效果。本设计方案,能简化系统结构,增强系统的信息处理能力,提高系统的可靠性,增强系统的通用性、灵活性和可扩展性,能方便地把船舶机舱自动化系统与船舶其它自动化系统集成为一个完整的船舶综合信息网络,实现信息共享。