【摘 要】
:
随着大数据和人工智能的发展,人们可以通过网络搜索引擎、爬虫软件和纹理数据集获取大量的纹理样图素材。理想的纹理样图能够为艺术家提供丰富的创作灵感,为三维物体表面贴上栩栩如生的纹理材质,为纹理合成提供高质量的输入纹理样图等。然而,传统的纹理样图获取方式大多依赖人工的拍摄、裁剪和挑选,需要消耗大量的人力物力,同时也需要具备纹理相关的知识,这使得让计算机代替人工提取纹理样图的需求变得越来越迫切。大多数对纹
论文部分内容阅读
随着大数据和人工智能的发展,人们可以通过网络搜索引擎、爬虫软件和纹理数据集获取大量的纹理样图素材。理想的纹理样图能够为艺术家提供丰富的创作灵感,为三维物体表面贴上栩栩如生的纹理材质,为纹理合成提供高质量的输入纹理样图等。然而,传统的纹理样图获取方式大多依赖人工的拍摄、裁剪和挑选,需要消耗大量的人力物力,同时也需要具备纹理相关的知识,这使得让计算机代替人工提取纹理样图的需求变得越来越迫切。大多数对纹理的研究集中于纹理特征分析、纹理合成、纹理分类、纹理分割和纹理映射等,较少关注如何去获取纹理。给定一张图片,如何从图中提取出合适的纹理样图是本文关注的重点,纹理样图表现为图中被截取的部分矩形区域,具有平稳性和局部性的纹理图像性质。本文运用目标检测相关技术可以将此类问题分为三个步骤,从而实现任意给定一张图片,就能自动从中提取出理想的纹理样图。这三个步骤包括从图中找出潜在的纹理候选区域、对这些候选区域进行纹理特征分析以及根据评分排序规则得出纹理样图分数。基于以上三个步骤,本文提出了两种纹理样图提取算法,分别是基于选择性搜索和纹理特征网络的纹理样图自动提取算法、基于区域候选网络和宽度学习的纹理样图自动提取算法。对于第一种方法,选择性搜索目标检测算法基于手工设计的图像特征,根据图像结构生成一系列子区域,通过计算相邻子区域的相似性,逐步合并最相似的区域。对比于穷举搜索,此方法能较快找到合适的纹理候选区域。这些候选区域有可能包含有缺陷的部分,需通过缺陷纹理过滤算法以排除这些含有杂质的纹理。此外,本文定义了一个基于纹理基元结构的理想纹理数据集,为卷积神经网络的纹理特征分析提供了训练数据。相比较于其它纹理分类网络,本文的纹理特征网络参数量较少,准确率有所提高。最后,根据分类网络得到的纹理样图准确度,综合考虑纹理样图的大小比例和纹理的分布性来确定最终的纹理样图排序结果。第二种方法调整了前两个步骤的顺序,先分析纹理特征再进行候选区域的获取。先通过特征金字塔网络提取出整张图片的特征,而不是上述方法分别对每个区域提取纹理特征,因为相邻的候选区域有很多重叠部分,对全图一次性提取减少了计算成本。然后运用区域候选网络从特征图上检测出潜在的纹理候选区域,相比较于选择性搜索算法手工设计的特征,区域候选网络从大量纹理数据集训练得到的特征有更好的鲁棒性,并且利用GPU的并行计算,提高了检测效率。最后,宽度学习分类算法不同于深度学习的训练算法,可以动态逐步更新网络权重。
其他文献
深度学习近年来得到了快速的发展,在计算机视觉,自然语言处理等众多领域有着优越的表现,催生了一系列智能产品的落地。而深度学习的本质是在大数据支撑下,由多层神经网络堆叠形成的信号处理系统,具有参数量大,计算复杂度高等特点,需要依靠高性能的服务器端来处理庞大的网络参数运算与更新。很多时候,出于响应时间、隐私方面和服务稳定性的考虑,更希望将这些网络模型放在移动终端上运行,而移动终端的运算资源及计算能力有限
模型压缩与优化是当下深度学习领域的研究热点之一,致力于解决深度神经网络(Deep Neural Network,DNN)模型过度冗余,参数过大导致的运算量或存储要求过高的问题。当前主流的基于低秩与稀疏分解的网络压缩方法没有整体考虑权重的这两种特性,忽略了它们之间的关联。其次,模型压缩涉及的超参数,如秩、稀疏度等的搜索空间极大,高度依赖领域专家经验进行选择。此外,在稀疏网络的学习中,网络连接结构与模
随着计算机技术和互联网的发展,视频正成为人们获取和交流信息的主要载体,其中视频监控越来越成为社会发展和人们生活不可或缺的一部分,如何使用计算机技术进行视频中的人类行为分析识别成为近年来的研究热点。本文在以光流信号为运动信息表征的传统双流卷积神经网络的基础上,提出以帧间差分图像序列作为时间流网络输入,运用Res Net-18网络结构建立双流网络模型实现视频中人体行为识别的方法。并对传统双流网络的数据
由于二维码独特的光学可见性,容易受到非法复制(Illegitimately-Copying,IC)的攻击。IC攻击不仅阻碍了二维码的推广使用,也对商家和用户造成了不可避免的经济损失。早期的防复制二维码主要利用特殊打印材料或特殊打印技术来设计的,导致了以下缺陷:生产成本高和通用性低。最近,有研究者通过分析非法信道特性,提出了新的防复制二维码,比如2LQR二维码(Two-Level QR Code)和
计算机视觉技术的快速发展为海量监控数据提供了多种自动化分析解决方案,就行人信息而言,现有的解决方案多是专注于目标检测、目标跟踪等低层算法,因此行人信息的分析方法仍待向中高层算法方向继续深入研究。由于行人的特性可通过年龄、性别、携带物等属性来推断,行人未来的意图能通过当前时刻的具体行为来预测,因此研究行人属性识别与行人异常行为分析对智慧安防等领域有着重要的意义。为了在真实监控场景下能更加鲁棒地提取出
新媒介消解了群体参与新兴文化塑造的壁垒,拓展了对日常现象的反思维度。其中,电子游戏作为新兴文化产业的翘楚,以惊人的爆发力迅速成为当下的潮流文化之一。但国内对其看法较为片面和保守,尤其是对电子游戏内涉及到暴力和死亡的场景,人们多表现出反感或排斥的态度。的确,不论是游戏结束(game over)或是所扮演的游戏内角色死去,“死亡”都是大部分电子游戏作品所无法回避的,但在角色扮演类电子游戏中,玩家可以通
深度卷积神经网络是计算机视觉领域非常有效的方法。海量增长的图像数据和日益普及的智能设备都要求快速、准确地理解图像的内容,并自动分割识别出图像中的目标物体。图像分割的任务是在给定的图像中检测出是否包含某类目标物体,并标注出图像中每个像素所属的对象类别,描绘出每个物体的边界,最终获得一幅具有像素语义标注的分割图。图像中目标物体的检测与分割对于计算机视觉的发展具有十分重要的意义,在实际的工程应用中也具有
卷积神经网络(Convolutional Neural Networks,CNN)以其强大的特征提取和表达能力,在计算机视觉任务中得到了广泛地应用。然而,由于CNN主要是利用局部感知特性进行特征提取,导致其全局感知能力较差,进而影响了提取特征的鲁棒性。近些年来,注意机制以其有效的全局感知特性,被成功地应用在自然语言处理和计算机视觉等领域。因此,如何将CNN的局部感知特性和注意机制的全局感知特性有效
多摄像头多目标跟踪应用于自动驾驶、视频监控等多个领域,是当前学术界和工业界共同关注的热点。在复杂背景条件和目标遮挡等情况下,如何实现多个目标在多个摄像头下进行实时有效地跟踪,是一个具有挑战的问题。为了进一步提升跟踪鲁棒性和算法效率,本文就多目标跟踪中的姿态估计及其并行加速算法,跟踪中基于姿态的数据关联、多摄像头多目标中的轨迹特征设计与关联等问题展开研究。首先,提出了一种基于CUDA的并行多人姿态估
随着科技的发展,数字图像处理与计算机视觉在人们的生活中扮演的角色越来越重要。数字图像中包含着庞大的信息量,不同类型的图像内容混杂在一起,图像结构纹理分解技术可以根据图像不同内容的不同特点,将图像分解为包含主要信息量、决定人类对图像内容主观认知的结构分量,与包含主要细节、不影响人类对图像内容主观认知的纹理分量。图像结构纹理分解的相关研究已经持续了很多年,主要的挑战在于,一幅图像的结构分量与纹理分量是