论文部分内容阅读
氰化废水的循环利用与达标外排是黄金冶炼行业节能减排、降低成本的关键环节,因此对其进行无害化处理或者综合利用具有重要的现实意义。论文采用沉淀-电解氧化联合技术对某黄金冶炼厂的高铁氰化提金废水进行综合处理,主要研究了沉淀、电解氧化过程及其主要影响因素,并在相关基础理论计算的基础上,进一步揭示了沉淀-电解氧化联合处理氰化废水过程的反应机理。研究表明,常温下向100mL含氰废水中加入3.0gCuCl2并搅拌40min后,CNT、CN-及Fe(CN)64-的沉淀率分别可达到95.29%、98.00%与100%。随着CuCl2加入量的增大,氰化废水中各主要离子的沉淀率逐步增加,沉淀物的形成次序为CuCN、Cu2Fe(CN)6、CuSCN。以钛板为阴阳极,采用一阴两阳电极体系对沉淀后液进行电解氧化处理,当电解溶液体积分数为60%,电解时间为5h,外加电压为6V,极板间距为15mm时,氰化废水中CNT与CN-的去除率分别达到了99.76%与99.90%。随着外加电压的增大,残留于废水中的Zn(CN)42-、Cu(CN)32-、CN-、SCN-及Cl-在电场作用下向阳极定向迁移,迁移至阳极表面的Cl-发生阳极氧化反应,生成的Cl2/ClO-将氰化物氧化为N2和CO2,释放出的Cu、Zn阳离子定向迁移至阴极,在阴极发生还原反应得到金属单质,从而使废水中残存的游离氰与金属氰络合离子的去除率逐渐增加。动力学研究表明铁离子和游离氰的沉淀过程符合二级动力学模型,其速率常数分别为2.923dm3/(mol·min)和0.797dm3/(mol·min),总氰电解氧化过程符合一级动力学模型,反应速率常数随外加电压的增大而增大。