论文部分内容阅读
草地早熟禾(Poapratensis L.)作为温带地区应用最广泛的草坪草之一,具有抗寒、耐旱、绿色期长、坪观质量高等特点,但需要频繁修剪以维持较高的草坪质量。空间环境中的诱变因子能诱发植物种子产生不定向变异,可能会获得符合育种方向的优良性状。本研究中的草地早熟禾种子经过太空飞行后返回地面种植的后代植株中发现有株高降低、叶色变深等外观质量较好的的变异株系,符合草坪草优良品种的选育方向。本文以空间诱变草地早熟禾M4代的矮化突变体(dwarf mutant,A16)和野生型(wildtype,WT)为研究材料,比较两者在细胞遗传、生理表型、分子表达水平方面的差异,以及对调控植物生长发育的脱氧木酮糖-5-磷酸合酶基因(DXS1)及其启动子进行功能研究,进而了解空间诱变矮化突变体的变异情况和空间诱变对相关基因的影响情况,既对培育草地早熟禾矮化品种具有指导意义,也为更好地利用空间诱变进行植物育种做出贡献。研究结果如下:(1)A16与WT在细胞遗传水平上的差异:空间环境对草地早熟禾叶片组织细胞结构产生了较大的影响。WT叶片上表皮细胞狭长而稀,倾向于横向伸展;而A16上表皮细胞明显呈梭形,短宽而多,倾向于径向伸展,而且A16的叶片气孔分布更密、气孔更小。此外,A16与WT转录组测序发现了 4203个差异表达基因,而且InDel多态性分析侧面表明了A16与WT的基因组/转录组之间存在大量随机的插入/缺失突变,说明空间环境对草地早熟禾的遗传物质产生变异作用。(2)A16与WT在生理表型水平上的差异:在株高方面,矮化突变体的株高调控可能与调控植物萜类物质合成的DXS1基因的下调表达、赤霉素合成通路上的GA3ox4基因下调表达、生长素合成通路的FMO基因和PIN5输出蛋白等基因的下调表达有关,而且A16中的赤霉素和生长素含量均低于WT;在叶色方面,A16的叶绿素含量显著高于WT,且叶绿素a/b的比值比WT要低,叶色差异可能是由叶绿素合成基因UroS的上调表达以及降解基因CLH1基因的下调表达所造成的;在抗旱耐盐方面,综合胁迫处理后的生理生化的反应指标、内源ABA含量、抗逆相关基因的差异表达,A16的抗旱性比野生型WT强,耐盐性方面两者没有显著差异;在抗病性方面,虽然PR1L、NPR1L抗病相关基因在A16中的表达量在病原菌诱导前处于较低水平,但在病原菌侵染后,其转录水平均显著提高,且增幅显著大于WT,说明WT和A16在诱导抗病性方面存在差异。(3)DXS1基因在草地早熟禾中的功能研究表明:草地早熟禾DXS1(PpDXS1)基因含有一个2139 bp的ORF框,与山羊草(Aegilops tauschili)和二穗短柄草(Brachypodium distachyon)的DXS1蛋白的最为相似,且属于DXS基因家族的第一族;PpDXS1基因在草地早熟禾的叶片、叶鞘和根中均有表达,其中叶片中的表达量最高;GA3、ABA、JA和病原菌侵染的外施处理均能提高PpDXS1基因的表达。此外,PpDXS1在草地早熟禾中的反义表达使得转基因株系的株高、GAs和IAA含量显著降低,而ABA和叶绿素含量在某些株系(antiDXS1-102)中是增加的,随后对antiDXS1-102转基因株系和转空载的对照植株(CK)进行转录组分析,结果表明与CK相比,与IPP/GGPP合成、GA和IAA生物合成和信号传递以及叶绿素相关的降解基因在antiDXS1-102植株中下调表达,而叶绿素和ABA的生物合成相关基因的表达上调,这与激素含量测定结果一致。(4)A16与WT的DXS1基因启动子序列的比较分析发现A16的PpDXS1基因的启动子区域存在一个715bp的插入片段和一个500bp的缺失片段,推测空间环境诱导DXS1基因启动子区发生插入/缺失突变;启动子在双荧光素酶报告系统及在转基因表达的草地早熟禾中的活性分析表明A16的PpDXS1启动子序列的相对活性是低于WT的,且活性降低是由在A16中缺失的片段所造成的;而且与缺失区域G-box元件结合的G-box结合因子(G-box binding factor 1,GBF1)对启动子活性具有转录激活作用,在过表达GBF1基因的转基因草地早熟禾中PpDXS1基因的转录水平显著提高。因此,我们推测在A16的PpDXS1启动子区缺失的部分含有的G-box元件以及与之结合的GBF1蛋白的转录激活功能可能是A16的DXS1基因启动子活性降低的原因,也是被启动子调控的DXS1基因表达水平降低的原因。综上所述,空间诱变在细胞遗传、生理表型、分子表达等水平对草地早熟禾均产生了较大影响,包括株高、叶色、生理抗性、基因表达等方面;而且空间环境通过诱发PpDXS1基因启动子发生插入/缺失突变来影响其基因表达,进而调控了植物整个生长发育过程。