【摘 要】
:
人类的生物视觉系统被认为是最高级的生物智能系统之一,在人类与环境进行交互的过程中起到至关重要的作用。近年来,更多的学者开始关注于生物视觉系统高效性、可塑性和可迁移性的内在计算机理,同时生物视觉启发的衍生理论如深度学习等也已经越来越成为图像处理领域的热点研究问题之一。本课题受生物视觉的启发,综合考虑传统的生物视觉机制与前沿的深度学习理论,设计视觉智能计算模型,并以传统的边缘检测和目前热门的小样本学习
论文部分内容阅读
人类的生物视觉系统被认为是最高级的生物智能系统之一,在人类与环境进行交互的过程中起到至关重要的作用。近年来,更多的学者开始关注于生物视觉系统高效性、可塑性和可迁移性的内在计算机理,同时生物视觉启发的衍生理论如深度学习等也已经越来越成为图像处理领域的热点研究问题之一。本课题受生物视觉的启发,综合考虑传统的生物视觉机制与前沿的深度学习理论,设计视觉智能计算模型,并以传统的边缘检测和目前热门的小样本学习、图像去雾为实例展开研究。本课题主要研究内容如下:(1)受生物视知觉系统工作中的长短时程突触互补特性启发,提出一种基于长短时程突触互补网络的边缘检测方法。构建一种具有长短时程突触互补特性的神经元网络,首先引入视锥细胞群的主导颜色拮抗特性,对待测图像的颜色拮抗通道进行加权编码,获得待测图像的初级边缘感知;然后模拟神经元群同步放电特性,定义突触动态连接的神经元作用窗口,实现对初级边缘感知的群放电时间编码;接着构建长短时程突触互补模块,基于短时程内神经元群同步放电特性和长时程内神经元放电活动时序空间依赖性,实现长短时程突触可塑性编码及互补融合,最后通过对时间信息流的编码得到边缘响应。以本实验室根据常规微生物实验需求而采集的20幅菌落图像为实验材料,并以重构相似度MSSIM、边缘置信度BIdx以及综合性指标EIdx作为评价指标。结果表明,相对于VSC、NIS以及MSP三种主流方法,本研究算法的检测结果边缘准确,且漏检率较低,与人工主观观测结果较为一致;同时EIdx指标的均值和标准差为0.804 8±0.052 1,整体性能优于上述三种主流方法。(2)受人类生物视觉系统少样本依赖性启发,提出一种基于视觉分级特征编码的小样本学习方法。考虑到同类小样本图像在方向和颜色等低级特征处具有共性,结合初级视皮层的方向感知特性和视锥细胞的颜色感知特性设计低级特征编码区,提取待识别图像的方向和颜色等低级特征;然后,利用冗余度增强的空洞卷积特性设计深度残差模块,解析图像的高级语义特征;最后,以度量学习的方式,利用余弦相似度衡量待识别物体与所属类别的相似度。以Omniglot数据集和mini Imagenet数据集为实验材料,分别用“5-way和1-shot、5-shot、10-shot”的实验方式进行模型训练。实验结果显示,三种组合方式在Omniglot数据集和mini Imagenet数据集下的识别准确率分别达到98.8%、99.2%、99.4%和55.39%、77.24%、78.31%,同时损失收敛速度极快,节省时间和资源成本。(3)为验证本文设计的智能计算模型的泛化能力和算法有效性,将提出的模型应用于图像去雾。本文首先考虑到不同级别的图像特征对图像的语义表达起到的作用不同,设计了一种分级编码器,分别提取图像低级特征和高级语义特征;接着,利用可分离共享卷积,改善传统空洞卷积存在的局部空间信息不一致风险;然后,通过在特征处理环节主动融合低级特征,聚合不同级别的图像特征实现图像增强;最后将增强后的图像特征进行解码,并将其与有雾图像进行融合,得到最终的图像去雾结果。以OTS数据集为实验材料,并以结构相似性SSIM、峰值信噪比PSNR作为定量评价指标,从定性和定量两个角度评价算法有效性。结果表明,相较于Meng、DCP、NLD、DCPDN以及DHN五种方法,本文算法有效去除了有雾图像的模糊特征,清晰地还原了图像应有的色彩和真实的形状。同时SSIM指标均值为21.0113,PSNR指标均值为0.8175,整体优于上述五种主流方法。
其他文献
核聚变是人类解决能源危机的理想新能源。磁约束聚变发展规划下,我国将独立自主地建造中国聚变工程试验堆(CFETR),完成聚变堆的工程验证与示范验证,为向聚变示范堆(DEMO)的过渡提供科学与技术上的支持,为我国聚变电站的独立建设奠定坚实基础。环向场(TF)磁体系统是托卡马克的关键部件。为了保证CFETR TF线圈的稳定运行,需要尽可能减小TF线圈盒向绕组传递的热流量。因此,TF线圈盒的冷却设计是十分
无源协同定位系统利用调频广播,数字电视,手机基站等第三方信号作为外辐射源,通过对直达波信号和目标回波信号进行相干处理,实现目标的定位与跟踪。该系统具有探测范围广、成本低、隐蔽性好、抗干扰能力强等优点,对提升我方军事防御系统的探测性能具有重要意义。但该系统俯仰角信息通常质量不高,导致目标高度估计不准确。当目标与接收站相距较远时,地球曲率进一步恶化了目标的估计精度。针对这个问题,本文开展了考虑地球曲率
T-S模糊模型作为逼近复杂非线性系统的有效工具之一,自1985年被提出以来,一直推动非线性系统的不断研究与发展。相比于一型T-S模糊模型,二型T-S模糊模型可以更好的表示与处理系统的不确定性,但随之带来的弊端是加重了系统的计算负担。区间二型模糊模型作为二型模糊模型的特例,不仅保留了二型模糊模型的优点,同时还降低了运算的复杂度。本文基于区间二型T-S模糊模型,针对连续时间与离散时间随机奇异非齐次Ma
为了更好地对高压辊磨机辊轴结构进行校核和优化,建立了 2 种辊轴装配模型,运用有限元分析对模型进行处理,计算得到辊轴的位移和应力分布;根据 Shigley’s 理论计算辊轴的疲劳极限值,对 2 种装配模型的有限元计算结果进行疲劳强度评估。结果表明,建立合适的辊轴装配模型并进行合理的处理,可以得到更加准确的分析结果,从而为辊轴的设计提供了一套有效的计算依据。
深度学习有三大核心要素:大数据、深度学习的算法设计和高性能的计算平台。在计算机视觉的目标识别领域中,大数据体现为待识别目标图像样本大数据构成的目标数据集。目标数据集是基于深度学习的目标识别算法的前提和基础,其完整性、均衡性和规模大小会直接影响算法的性能。但是,在目标数据集构建过程中,受到待识别目标的成像条件、采集条件、合作/非合作目标、成本等诸多因素的影响,目标数据集表现出不均衡且不完备的特征,不
miRNA是一类长约18~22个核苷酸的非编码小分子RNA,在癌症筛查和预后判断方面潜力巨大。但是miRNA的同源性很高,体内表达量不高,为miRNA的检测带来许多困难。且现在常用的miRNA检测方法一般都需要复杂的预处理步骤、昂贵的光学仪器以及荧光试剂。电化学传感技术因具有灵敏度高、简单便携的优点,在临床诊断、药物分析等方面被高度重视。多孔材料由于其具有的大的比表面积、高透过性和高吸附性,被广泛
作为分布式策略的重要载体,多智能体系统作为一门控制工程领域的前沿学科倍受不同科学领域研究人员的关注。多智能体系统群集行为的核心在于智能体之间的交互网络拓扑,进而设计一系列分布式协调控制器来实现整个系统的群集行为,具有重要的工程意义与应用前景。本文采用代数图论、矩阵理论与系统稳定性理论等分析方法,研究了合作竞争网络中多智能体系统的结构平衡保持问题,并在此基础上探讨其相应的群集行为。具体研究工作如下:
复合调制信号广泛应用于测控系统,因其同时具有模拟调制设备复杂度低和数字调制保密性强等特点,在卫星通信、测控、测距以及广播系统中的应用日益广泛,在卫星通信中发挥着重要作用。针对复合调制信号开展调制识别方法研究,可以有效地推动现代复杂通信环境下的测控技术向前发展。目前,复合调制信号识别的相关研究主要依赖于人为提取信号特征的识别算法。传统方法的识别性能高度依赖人为设定特征的准确性,泛化能力较差,在低信噪
细菌感染及其引发的重大疾病已经严重威胁人类的健康和安全,设计一种高效、低毒的新型抗菌药物成为了亟待解决的科学问题。金属基纳米酶具有优异的类酶活性,且与天然酶相比具有易保存、易制备、成本低等优点,使其在抗菌治疗领域中得到广泛应用。然而,现有金属基纳米酶需要使用大量过氧化氢。因此,发展具有高效、广谱的抗菌性能且无需过氧化氢参加反应的金属基纳米酶具有重要的研究意义和应用价值,本论文成功合成一种金属基纳米