论文部分内容阅读
MEMS(Micro.Electromechanical.System)陀螺仪以体积小、寿命长、成本低、耐冲击和功耗低等特征,广泛应用于众多民用领域,如汽车导航、机器人姿态测量系统、拍照设备的防抖平台、虚拟体感游戏、电子玩具等;此外,日后可以预见的无人机等侦查设备等武器系统、必然向着小型化、智能化、数字化与高机动化方向发展,因此,MEMS陀螺仪具有巨大的发展价值与广阔的前景,其优良的特性使其受到世界各国的广泛关注,并且已被列为21世纪振兴发展的关键技术之一。然而MEMS陀螺仪的精度相对较低,使其成为制导控制系统,微型导航系统等领域的发展瓶颈。提高陀螺精度的途径有两种:第一,从硬件构造上提升系统性能;第二,从算法角度入手,切实有效地缩小陀螺的随机漂移误差,提高测量精度。本文从软件的角度入手,研究了MEMS陀螺仪的.噪声特性,就MEMS陀螺仪的随机漂移.误差补偿.技术展开了研究。本文首先介绍了陀螺的的几项性能指标与内部工作原理,用Allan方差法对陀螺的噪声特性进行了相关分析。之后系统介绍了时间序列法建模的的相关理论,为增强试验数据的可靠性,特采集10组数据运用拉伊达准则去除奇异点法对陀螺的输出数据进行预处理,接着应用逐步回归的方法对漂移趋势进行拟合,将其转换为零均值的平稳数据。最后计算ACF,PCF,建立了自回归的AR模型。接着运用卡尔曼滤波对10组陀螺的随机漂移误差进行处理。实验结果充分表明:基于时间序列的卡尔曼滤波法在陀螺随机漂移的误差补偿中的应用是有效的。对于MEMS陀螺的动态误差处理方面,以转台作为标定,设定陀螺进行不同速率的匀速运动,此时经典卡尔曼滤波器在解决动态确定性误差时,依旧可行有效。而当陀螺做变速运动时,设计了一种自适应卡尔曼滤波器能够有效地抑制陀螺的动态漂移,提高陀螺精度。