基于温度场和表面微结构调控的TC4/6061异种合金激光深熔钎焊接头强化研究

来源 :哈尔滨工业大学 | 被引量 : 0次 | 上传用户:m104129495
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
Ti/Al异种材料焊接结构以其钛合金耐高温、铝合金易成形等结构功能化和结构轻量化特点,在航空、航天领域具有广阔的应用前景和迫切需求。新一代大推重比航空发动机、大推力液体运载火箭发动机等急需突破中厚Ti/Al结构可靠焊接难题。近年来,国内外研究人员围绕Ti/Al异种材料激光熔钎焊的界面理论、组织性能调控方法开展了大量研究,主要集中在采用激光热导焊的方法解决1~2mm厚的薄板连接问题。为解决中厚板激光深熔钎焊界面IMC调控的难题,本文以5mm厚TC4钛合金和6061铝合金为研究对象,基于摆动激光焊接和真空激光焊接的温度场调控能力以及表面微结构化对润湿铺展的促进作用,提出了Ti/Al异种合金激光深熔钎焊复合接头组织性能调控的新方法,核心思想是:通过摆动激光及真空激光焊有效降低Ti/Al结合面峰值温度及厚度方向温差从而实现IMC厚度及均匀性控制,通过纳秒激光在TC4侧壁表面制备微结构提高浸润特性和形成“钉扎”强化结构。TC4/6061激光熔钎焊接头强度由6061铝合金侧熔焊接头和TC4钛合金侧钎焊接头两部分共同决定。本文针对单激光、摆动激光、真空激光等焊接工艺下接头的成形质量、微观组织及力学性能展开了系统研究。结果表明,相较于传统的激光熔钎焊,通过摆动激光焊和真空激光焊方法均改善了接头成形,显著降低了熔焊区气孔缺陷,促进了熔焊区晶粒细化,提高了接头强度。利用EBSD对熔焊区结晶行为进行分析,采用摆动激光、真空激光调节能场后熔焊区平均晶粒尺寸由激光熔钎焊的27.7μm分别减小至7.2μm、14.7μm;接头抗拉强度分别为173MPa、181MPa,调控能场后熔钎焊接头均在IMC层与铝合金界面位置发生准解理断裂。在优化TC4/6061熔焊区的基础上,针对TC4侧钎焊区IMC层开展了组分、形貌、分布表征及调控研究,利用SEM、EDS和TEM对IMC层进行分析,结果表明,界面IMC层由纳米级层状Ti Al扩散层和在扩散层上生长出的连续锯齿状Ti Al3反应层构成,摆动激光深熔钎焊接头IMC平均厚度1.1μm,不同位置最大厚度差0.7μm;真空激光深熔钎焊界面IMC沿厚度分布更均匀,平均厚度1.0μm,界面不同位置最大厚度差仅为0.2μm。两种方式均实现了对中厚板界面IMC层的尺寸及分布的调控。利用原位TEM拉伸分析了TC4/6061微区断裂行为,试样加载过程中,裂纹倾向在IMC层附近的铝合金或钛合金处萌生随后扩展并最终断裂,当界面温度场调控得当时,IMC层将不再是TC4/6061接头的薄弱位置。建立了多物理场热流耦合模型,通过数值模拟获得了单激光、摆动激光、真空激光能场调控下的界面温度场及不同位置的热循环规律。三种方法的获得的Ti/Al界面最高峰值温度分别为1520 K、1346 K、1222 K,沿厚度方向温度差分别为479 K、311 K、99K。证实了摆动激光和真空激光均有效降低了界面沿厚度方向温度差,实现对TC4/6061激光深熔钎焊界面IMC层的有效调控。结合界面IMC层尺寸及分布特征,揭示了温度场对IMC的调控机制:峰值温度决定了IMC层厚度,沿厚度方向温度梯度决定了IMC层分布均匀性。在熔钎焊中,钎料在母材表面的润湿铺展能力是形成高质量接头的关键因素。为了促进6061Al在TC4上的润湿铺展并进一步强化TC4/6061异种材料深熔钎焊接头,本文采用纳秒激光在TC4表面制备沟槽微结构,开展了TC4表面纳秒激光微结构化工艺探索,利用SEM、AFM、XRD等手段对制备出沟槽的尺寸、表面微纳形貌及物相进行标定,通过高温真空钎焊炉进行微结构化表面润湿铺展特性测试。最佳纳秒激光工艺参数为:单脉冲能量2.33m J、振镜扫描速度450mm/s、扫描次数10次,加工后表面沟槽宽163μm、深107μm,表面未产生新物相依旧为TC4典型物相α-Ti、β-Ti,此时6061铝合金钎料在TC4表面润湿铺展速率最快,高温润湿角最小为1.8°。在明确最优微结构尺寸及工艺基础上,最终实现微结构化TC4/6061多能场调控下的接头强化,熔化的6061铝合金在TC4表面润湿铺展良好,完整的填充于TC4表面沟槽中,实现了“钉扎”结构强化,接头抗拉强度达到231 MPa。
其他文献
在纤维增强复合材料中,界面即纤维和树脂基体间的界面区域,被认为是决定复合材料整体性能的关键因素。然而在复合材料的长期使用过程中,界面容易受到机械力、化学、热、紫外线辐射等刺激的影响,在结构内部形成裂纹或微裂纹,这些裂纹或微裂纹很难检测和修复,随着裂纹的不断扩展最终导致复合材料整体性能失效。赋予复合材料界面损伤修复性能作为一种延长复合材料使用寿命的新兴方法一直是各国科研工作者研究的热点。本论文针对热
碳纤维织物增强复合材料具有高比刚度、高比强度、高损伤容限、良好的抗冲击性能以及灵活的可设计性,广泛应用于航空航天领域中承力结构部件。正确地分析及评价编织复合材料结构的力学性能是成功设计相关结构部件的关键。编织复合材料结构的力学行为强烈依赖于复杂的内部微细观结构及材料性能等诸多因素,尤其当宏观编织结构呈现扭曲等复杂结构形态时,如发动机叶片,其宏观的非线性与内部复杂的织物结构相关。基于唯象的实验方法是
锂硫电池的理论比能量远高于锂离子电池体系,且硫资源丰富,成本较低,因而具有广阔的应用前景。然而锂硫电池的商业化应用受到硫及硫化锂较差的电子导电性、穿梭效应、锂枝晶等因素的制约。其中穿梭效应会降低活性硫的利用率、导致锂负极的腐蚀,进而造成电池性能的恶化。本文通过正极材料结构及组分设计、隔膜修饰及电解液离子溶剂化结构调控等方式来抑制多硫化锂的溶解扩散。研究了极性材料对多硫化锂转化过程的影响及其作用机制
随着航空、航天、汽车等行业的发展,曲面加工的需求越来越多,对于加工性能及效率的要求也越来越高。为适应不同曲面零件的高效率、高精度、高安全性加工需求,需要充分考虑人、机、环境中的多重交互问题。以往的研究大多仅考虑人与机器人之间或机器人与环境之间的单一交互问题,且假定曲面特征已知或通过视觉等测量手段获得曲面特征信息。本文面向未知曲面加工作业,考虑人-机-环境的多重交互特性,研究协作机器人的柔顺控制方法
由于元器件自身的使用寿命和系统自身固有的特性等因素,系统中长期运行的元器件,例如执行机构和传感器,往往会发生一些未知的故障,这些故障可能会造成系统性能下降甚至导致系统是不稳定的。因此,在控制系统设计的时候,需要考虑控制器的容错能力,确保当系统在发生故障时,系统仍然是稳定的且具有满意的性能。容错控制技术作为一种有效的解决该问题的方法,受到许多人的关注。另一方面,由于系统中存在未建模参数误差和外部扰动
锂离子电池被认为是最具前景的能源存储设备,自商业化以来就一直受到广泛关注,铌酸钛(TiNb2O7)作为电池负极材料,能够同时满足高安全性及高功率密度的需求,有希望在汽车启停电源等环境中应用。但是,充放电过程中存在的性能衰减影响了TiNb2O7材料的使用,而针对这一问题仍然缺乏深入研究以及有针对性的解决方法。本文系统研究TiNb2O7材料的基本性能,分析材料在嵌脱锂过程中容量衰减的主要因素。在此基础
单斜型磷酸钒锂(α-Li3V2(PO4)3)材料的结构稳定,电化学反应平台电压和理论容量高,安全性好,是具有前景的高性能正极材料。然而,伴随着聚阴离子(PO4)n带来的结构稳定优势,电子电导率低以及在3.0-4.8V电压窗口的循环过程中不可逆电化学过程等问题影响其进一步的应用。目前,关于磷酸钒锂材料的研究存在不够深入、缺乏机理认识的情况,没有建立起有效的构效关联。本论文以单斜型磷酸钒锂作为研究对象
超润湿表面在自清洁、抗污、防雾等方面具有重大应用价值,随着实际需求的多样化,近年来,超润湿表面的研究逐渐由单一超润湿性/单一功能向多重超润湿性/多功能发展,其中同时对油和水体现出截然不同超润湿性的表面被称为选择超润湿表面,由于这类表面可以对油水混合物实现高速、低能耗的分离,因此具有重要的研究意义和应用价值。选择超润湿表面主要分为超疏水/超亲油表面、超亲水/水下超疏油表面、超疏油/超亲水表面和刺激响
溴代阻燃剂(BFRs)具有毒性、生物累积性和难降解性,大气BFRs中对人体健康造成危害越来越受到学者们和普通民众的广泛关注。当前已有许多学者对BFRs在大气中的气相和颗粒相的分配行为、气态和颗粒态BFRs对人体健康造成的风险进行了深入的研究。然而,颗粒态BFRs的在大气中并非均一分布,各粒径区间颗粒态BFRs与气态BFRs的分配规律也各有差异,导致不同粒径区间BFRs对人健康产生了不同的危害。现有
风荷载及风致响应是高柔、大跨等风敏感结构安全性和使用性的主要控制因素。风荷载的获取手段主要有直接测量法和间接测量法。然而,实际工程结构表面的风压分布通常较为复杂,基于有限个测量点和测量位置的风压信息无法得到完整的风压分布。相较于风压测量,结构响应的测量技术较为成熟且测量精度较高,利用结构响应反演未知风荷载的间接测量方法具有工程实际意义。风荷载反演要求结构参数已知,但是建筑结构在服役过程中会产生材料