论文部分内容阅读
本文利用经典风险模型的思想,对索赔到达时间间隔服从亏时几何分布的连续时间风险模型做了进一步的研究,应用关键更新定理(格点分布的情形),得到了破产概率的Lundberg界,Cramér-Lundberg逼近以及有限时间破产概率的Lundberg不等式。 本文共三章,第一章是奠定本论文基础的相关知识,包括逐段决定马尔可夫过程的一些基本概念、更新方程与关键更新定理的内容以及经典风险模型的介绍,主要取自[2]、[8]和[9]。第二章介绍了该风险模型在索赔额分布为一般分布下的破产概率的一般表达式及相关定理,内容来自[6]。第三章是本文的主体,求得了该模型的破产概率的Lundberg界,Cramér-Lundberg逼近以及有限时间破产概率的Lundberg不等式。