论文部分内容阅读
大数据时代需要存储和处理的数据量呈现爆发式增长,而传统基于浮栅结构的存储器和基于冯.诺依曼构架的计算器已经达到技术瓶颈,发展逐渐变缓,因此寻找新的存储器件取代现有的浮栅式存储器以及发展新的计算系统已经成为学术领域和工业领域关注的重点。忆阻器尤其是阻变忆阻器因其速度快、能耗小、集成度密高、保持时间长以及能够实现对神经突触功能模拟等优点,被认为是下一代存储器和类脑计算网络最有力的竞争者。本文以基于HfO2薄膜的阻变忆阻器为主要研究对象,对基于氧化物的阻变忆阻器在非易失性存储、突触功能仿生模拟和神经网络构建方面进行研究。主要的研究内容如下:1.以ALD生长的HfO2薄膜作为阻变关键介质材料,制备了Pt/HfO2/Ti阻变器件,对其直流扫描下的阻变特性进行了研究。发现器件可以通过对Ti顶电极施加正向大电压进行Forming软击穿,随后表现出稳定的逆时针双极性阻变特性,负向Forming器件的稳定性极差。器件的Forming限制电流较高时可以起到很好的限制作用,但是小限制电流下,由于寄生电容产生的过冲电流的存在,器件依然会被Forming到较低的阻态。对不同氧化铪厚度器件的研究表明,器件的开关比以及阻值转变参数都随介质厚度的增加而增加,但10nm HfO2的器件良品率和器件稳定性最好。器件的高阻态阻值与器件面积呈负线性关系,低阻态与器件面积无关,结合器件高/低阻态阻值均随温度呈线性相关的结果,推断器件属于局部氧空位导电细丝导通和断裂形成的阻变效应。2.通过在ALD生长HfO2的过程中插入AL2O3的生长循环,制备了Al原子浓度为6.2%的Pt/Al:HfO2/Ti器件。通过对介质薄膜的XPS分析,发现Al掺杂HfO2介质的O结合能提高,氧空位的形成能降低,从而使得介质中的氧离子更容易脱离氧化铪晶格,形成较高浓度的氧空位,导致器件的高阻态时电流较大,器件的存储窗口降低,但是器件的阻值转变电压也降低,阻值分布均一性得到提高,并且表现出阻值渐变的特性,具备多值存储的潜力。通过改变Set扫描限制电流、Set/Reset脉冲电压幅值的方式实现了器件的20级稳定存储状态,而通过改变Set/Reset脉冲数量的操作方式,成功实现了35级的多值存储。3.研究了Crossbar结构对器件阻变参数的影响,发现器件的阻值转变电压降低,但良品率和器件的阻值分布均一性降低,器件之间的差异性变大。通过对器件进行氮气氛围退火处理发现,500°C退火后的器件各项阻变参数均有提高,且具备自限流特性。对不同厚度器件的Forming曲线的拟合发现,随着氧化铪层厚度的增加,器件初始态导电机制由P-F发射机制向肖特基发射机制转变,提出退火后的器件自限流特性的获得,是因为高温退火过程促进了Ti顶电极与HfO2的反应,产生一层较厚的氧化钛,起到限流与分压作用,而HfO2/Ti界面产生的氧空位在高温下向下扩散,使得器件内氧空位导电细丝的形成与断裂更稳定,器件的性能的提高。较厚氧化铪在初始态表现出的肖特基发射导电机制,则是因为退火过程降低了Pt/HfO2界面态,使界面的肖特基势垒效应更明显。4.制备和封装了不同规模的Crossbar结构1R阵列,并分析了不同的阵列测试方法对阵列操作的可靠性,发现未退火器件构成的阵列因不具备自限流特性而无法工作,浮空测试法因串联路径上器件的Forming电压不同而无法对阵列进行初始化操作,且存在很高的误操作概率,接地法因被选中字线上的电流过大而容易导致电极断裂或引线熔断,无法对大规模阵列进行初始化操作,但适合用于小电压读取器件阻值,1/3Vd测试法因未被选中字线和位线上的总电流过大而未能对阵列成功初始化,通过1/2Vd测试法成功地初始化了16×16个器件的阵列,而再大的32×32阵列因失效器件的数量多而导致漏电流太大,未能成功地初始化。对16×16阵列进行了100个循环的擦除/写入测试,发现阵列中失效器件的比例由12%增加到了31%,远高于单个器件进行循环的失效率。5.通过将忆阻器与MOS管串联制备了1T1R阵列,并搭建了双层全连接神经网络,对8×8手写数字图像识别准确率达到95.19%。通过将对忆阻器阵列中的器件随机替换为失效器件,发现处于低电导失效的器件对网络的识别准确率影响很小,而高电导失效器件的存在会使得网络识别准确率急剧下降。通过利用测试得到的忆阻器电导调节范围和精度数据,仿真计算了双层网络识别准确率与隐藏层神经元个数的关系,与按32位浮点数权值精度的神经网络相比,识别准确率相差不到1%。神经网络完成一次图像识别,忆阻器阵列所需功耗仅1.88n J。6.对退火处理的20nm HfO2器件的顺时针扫描易失性阻变特性进行了研究,发现器件并不需要进行Forming,操作电流远小于大电压Forming后的非易失性阻变循环转变电流,且阻值可以恢复到器件的初始状态。器件的阻值均随器件面积的增大而减小,低阻态阻值退化速度随温度的升高而加快。通过对器件Set和Reset过程的I-V曲线拟合表明器件属于肖特基导电机制,并提出Pt/HfO2/Ti器件的易失性阻变效应是由于Pt/HfO2界面附近陷阱态对电子的捕获和去捕获过程引起的。最后通过Pt/HfO2/Ti易失性阻变器件对神经突触的短时程增强、短时程抑制、短时记忆到长时记忆的转变以及STDP功能进行了模拟。