基于深度迁移学习的轴承故障诊断方法研究

来源 :燕山大学 | 被引量 : 0次 | 上传用户:huangfei1117
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
机械装备结构日益复杂、自动化,对设备安全性和可靠性的要求也越来越高,机械故障的检测和诊断显得尤为重要,基于振动信号分析的数据驱动类方法得到了广泛研究。但多数智能故障诊断方法的应用基础为训练数据与测试数据同分布,而实际中复杂工况的影响使得理论方法的诊断效果受到较大影响。迁移学习的引入为解决不同数据分布下的轴承故障诊断问题提供了新思路。该文主要研究了基于深度迁移学习的轴承故障跨域诊断方法。首先,考虑到旋转机械实际运转中工况复杂多变导致数据分布产生偏差,降低了单一识别模型的识别准确率,该文将域适应引入轴承故障诊断过程中,基于深度学习和迁移学习提出了一种特征空间域和标签概率分布同步适应的迁移诊断网络。该网络将一维稠密卷积网络及注意力机制融合,实现了复杂故障特征的自动提取;域适应处理则通过联合最小化特征概率分布差异和标签概率分布差异来约束网络学习域不变特征;最终对变工况滚动轴承故障实现了高准确度的识别。其次,针对标记样本稀少和多个相似数据集资源利用不充足的问题,该文提出了基于多源域迁移的轴承故障诊断方法。该方法以卷积神经网络的特征提取为基础,对提取的多组源域数据信息进行综合利用。首先提取不同源域数据和目标域数据间的域不变信息,并构建各个源域分类器,然后通过源域分类器的加权合并实现多源域信息的互补利用,最终完成目标域样本的分类识别。多个数据集下的跨机械诊断实验结果表明了该方法的有效性。该文的方法分别在美国凯斯西储轴承数据集及辛辛那提大学轴承数据集等多个数据集上进行了验证,文中还对所提方法的重要参数及其影响进行了深入分析,并与常用方法进行了对比,实验结果表明了该文研究方法的有效性及较好的性能。
其他文献
图像超分辨率技术旨在将低分辨率图像重建成高分辨率图像,它是计算机视觉领域的热点问题,同时也非常具有挑战性和开放性。在医学,监控,遥感等行业领域都有非常广泛的应用前景。近年来随着深度学习的发展,基于深度学习的图像超分辨率算法获得了比传统算法更好的效果。通过对国内外研究现状的深入分析,发现目前许多算法对图像特征的利用不够完善,重建后的图像缺乏细节纹理信息,感知质量不高。本文在已有的基于深度学习的图像超
随着互联网技术的突飞猛进,自然界中的复杂系统可以抽象为复杂网络。如何准确有效地发现复杂网络中的重叠社区,快速实现功能划分,是当今世界复杂网络领域的问题。现阶段复杂网络分为无属性复杂网络和属性复杂网络。无属性复杂网络重叠社区发现算法大都基于结构划分,然而这些算法的准确率及稳定性有待提高。部分属性复杂网络重叠社区发现算法忽略属性信息,具有较大的信息损失。部分算法虽然充分利用了结构、属性信息,但是具有较
人们的工作学习越来越离不开网络。网络给人们的生活带来便利的同时,网络漏洞攻击,如拒绝服务攻击、突发访问、蠕虫病毒等也威胁着人们的隐私和财产安全。流量异常检测在检测和预防潜在威胁方面发挥着越来越重要的作用。在流量异常检测领域,已经有大量的研究成果,但是仍然存在一些问题,例如对未知攻击类型检测率低和对少数类别识别率不高等。本文针对其中的一些难题进行研究,主要研究内容如下:首先,基于迁移成分分析的流量异
随着基于位置的社交网络(Location Based Social Network,LBSN)不断地快速进步,个性化兴趣点推荐也逐渐流行,它可以帮助用户发现其可能感兴趣的位置。然而,由于兴趣点推荐是一种隐式反馈,使得用户-兴趣点之间交互存在困难,如果没有对用户签到行为进行“区别对待”,会导致对用户偏好的挖掘不够准确,而且由于用户的签到数量在整个位置社交网络中只占很小的比例,使得签到数据存在高稀疏性
随着人工智能的兴起,以脑机接口(Brain Computer Interface,BCI)为桥梁的脑神经科学研究正迅速展开。其中对虚拟现实场景下空间认知脑电信号的分析成为该领域研究热点,通过空间认知训练前后脑电信号变化可以有效评估认知能力训练效果。目前,在空间认知脑电信号研究方面取得了不少进展,主要包括脑电信号的特征提取以及后续的数据分类。但是仍然存在着不足,主要体现在计算不同通道之间的耦合特征强
近年来,因果特征选择已逐渐成为机器学习和因果发现领域的研究热点。它通过将特征预测与因果发现联系在一起来识别目标属性(Target attribute,T)的马尔可夫毯(Markov Blanket,MB)。本文针对当前因果特征选择无法应用于动态特征空间,而面向流特征的特征选择无法挖掘出T的MB或只识别出T的PC集(Parents and Children)的问题,从在线学习MB的角度,提出一个面向
近年来,随着人工智能技术的不断发展,研究者在单智能体深度强化学习领域取得了许多优秀的成果。为了解决复杂的团队任务,研究人员将深度强化学习方法应用到了多智能体领域。地标覆盖任务是最常见的多智能体协同问题之一,在国防、物流、车间等领域均有重要应用。多智能体系统中,内部智能体同时与环境交互,且智能体之间相互影响,受邻居智能体的位置、运动速度等因素影响较大,导致很多单智能体深度强化学习算法在多智能体系统中
基于深度网络的图像分类技术性能大幅提升,使得计算机视觉迈入产业化阶段,逐步应用于人类工作和生活多方面。人体行为识别作为计算机视觉中典型的分类任务,在医疗、家庭、交通运输等多种场景下的潜在价值不可估量。本文从行为识别的应用方向出发,分析了日常行为中的跌倒动作以及相似动作,运用深度学习的方法设计了针对跌倒动作、相似动作的行为识别方法。首先,提取了FallFree骨架数据集,借助Kinect Studi
随着软件在日常生活中的广泛使用,软件安全问题正逐渐引起人们的重视。其中缓冲区溢出漏洞在软件安全中最常见也是最严重的一种漏洞。缓冲区溢出漏洞会导致权限被非法获取,信息被窃取,系统瘫痪等一系列危害。为了能有效的检测出缓冲区溢出漏洞,本文提出一种基于深度学习的缓冲区溢出漏洞检测方法。本文主要工作如下。首先,针对软件缓冲区溢出漏洞进行研究,针对缓冲区溢出漏洞可疑代码,构建了抽象语法树。基于缓冲区溢出漏洞可
随着社会的发展,针对复杂网络社区发现算法的研究逐渐深入,社区发现算法在推荐领域、信息传播、精准营销等方面都有着很大的价值。标签传播算法因为其简易性和效率高而受到研究学者的青睐,然而标签传播社区发现算法存在稳定性差、准确率低的问题。针对上述问题,本文分别在静态社区和动态社区上提出了基于标签传播思想的社区发现算法。首先,针对标签传播算法稳定性不足,提出了融合标签熵和k-shell的标签传播重叠社区发现