论文部分内容阅读
包合水合物,因其在能源储存和器件应用等方面的巨大潜力,有望改善人类社会的能源危机,因此已成为能源和环境领域的一类重要材料。近年来,人们对于包合水合物堆积的笼状结构所发生的包合现象的本质已经进行了大量的研究。此外,一些包合水合物表现出独特的磁性、强的离子导电性、高于室温的熔点、不同寻常的结构转换等显著的物理化学性质也将导致包合水合物转化为极具应用前景的水分子基的新型功能材料。尽管包合水合物展现了广阔的应用前景,但其固有的本质至今仍然缺乏微观和宏观两个方面的充分理解。因此,需要进一步的研究来了解此类冰晶材料中独特的包合现象和未被揭示的主客体相互作用等特性。本文通过量子化学计算及从头算分子动力学模拟,探究了活性及磁性客体分子包合在包合水合物框架结构中的独特包合和磁耦合现象。此外,还详细讨论了氢氧根离子在包合水合物中的迁移机理。主要的创新点和研究成果如下:(1)氮杂苯包合物独特的溶剂化效应众所周知,水作为溶剂可以稳定一些自身不稳定的物质,但包合水合物的溶剂效应及其对溶质分子性质的影响却知之甚少。基于实验中观测到的sⅡ型包合水合物包合负电子亲和势的氮杂苯(哒嗪、嘧啶、吡嗪、吡啶)和苯客体结构,利用DFT计算从理论上探讨了此类复合包合物的结构和性质,关注于它们的稳定性、电子亲和力、振动位移、质子转移、特别是包合物笼独特的溶剂化效应。结果表明包合物笼显著改变了氮杂苯/苯的结构和性质,使其稳定性提高、C-H伸缩蓝移、电子亲和势从负值转变到相当大的正值而成为更好的电子载体。此外,电子俘获不仅增强了主客体间的静电和氢键相互作用,也改变了氢键结构,甚至诱导了水笼上质子自发或以低势垒向客体转移,进而导致了两种结构模式(阴离子包合物和发生质子转移包合物),这都取决于水笼中客体分子的质子亲和力、极性和位置取向。这项工作表征了用于稳定氮杂苯及其阴离子的独特溶剂化模型,并提出对主-客体相互作用(包括静电、氢键和限制作用)以及阴离子包合物结构和性质变化的新颖见解。显然,这些信息对包合水合物通过包合特殊分子种类(如不稳定阴离子、自由基、电子等)发现其新特性来设计新型冰晶材料具有指导意义。(2)磁性双氧包合物:极具前景的冰晶材料构建单元包合水合物因其氢键笼结构可以选择性地捕获具有特殊电子特性的客体分子而有望成为新的功能材料,因此在基础科学和实际应用中引起了广泛的研究兴趣。然而,关于磁性包合水合物的电子性质和自旋耦合机制的信息却相当缺乏。在这项工作中,我们首次利用密度泛函理论结合从头算分子动力学探究了 sI型双氧包合物的磁性和自旋耦合机理。结果表明这些双氧包合物展示出丰富的自旋耦合特性,取决于水笼中客体O2的占据模式和两个O2分子的相对取向,它们主导着自旋中心之间的轨道重叠。当两个客体O2以相对平行取向占据在两个对称的51262笼或同一个51262笼时,氧气包合物呈现反铁磁基态,而对于其他所有的氧气分布模式,则表现出顺磁基态。此外,我们还探究了弹性应变(-7%到20%)对氧气包合物磁性质的调控,发现弹性应变诱导其自旋排列和磁性质在反铁磁[↑↑…↓↑…↑↑…↓↓…]n和铁磁[↑…↑…↑…↑…]n之间可逆转换,并且呈非线性响应。随着压缩应变增强,客体O2向宿主笼体的自旋极化增强,诱导了主体水笼介导的O2…O(主体笼)…O2超交换耦合,对提高氧气包合物的自旋耦合起到辅助作用。这些有意义的发现有望为开发基于水合包合物的新型冰晶磁性纳米材料提供有用的信息。(3)离子掺杂包合水合物笼结构辅助顺磁客体的超交换自旋耦合包合水合物的客体敏感磁性使其可以作为一种新型的冰晶磁性材料已经得到研究的证实,但由于其磁性较弱难以应用于实际中。通过采用第一性原理计算,我们提出将OH-离子嵌入包合水合物主体氢键网格中来增强磁性的方法。结果表明,相比于中性包合物,顺磁性O2在离子包合物中更加稳定,这是由于阳离子客体和阴离子主体晶格之间的离子相互作用。进一步系统的探究发现阴离子主体氢键网格不仅改变了客体O2之间的磁耦合模式,而且极大地增强了它们的磁耦合强度。离子包合物O2·EMN+@CHs表现反铁磁基态,计算得到其磁交换能Eex=-23 meV,具有比纯氧气包合物O2@CHs(顺磁态,Eex=0 meV)和非离子氧气包合物O2·MTHF@CHs(铁磁态,Eex=2 meV)明显更强的磁耦合作用。O2·EMN+@CHs的反铁磁基态来源于客体O2通过水笼上的OH-离子实现主-客体Op轨道混合而产生的超交换耦合作用。此外,我们也探究了施加应变对O2·X@CHs(X=EMN+OH-,MTHF)的影响,发现随着压缩应变的增大客体O2的反铁磁耦合显著增强,而随着张力的增大铁磁性更加明显。这些结果揭示了OH-离子嵌入包合物主体笼以及施加压缩应变可以显著提高包合物的磁性能。本研究工作很好地解释了包合顺磁性客体的离子包合物中发生的独特磁耦合现象,也为探索基于包合水合物的自旋电子器件开辟了新的途径。(4)离子型包合水合物氢氧根阴离子迁移动力学多孔晶体包合水合物即使在低温下也表现出相当高的电导率,因此已被视为潜在的固体离子导体。包合水合物出色的离子导电性能源于它特殊的主体氢键网络。迄今为止,主体氢键网络对OH-离子迁移的影响仍然是人们对离子包合物导电性认识的空白。具体而言,OH-在离子包合物主体水笼中通过质子转移发生迁移和扩散有关的分子机制仍然是一个悬而未决的问题。本文利用从头算分子动力学方法探究了 Me4N+OH-离子包合物中OH-的局部水合及电子结构,并探讨了 OH-离子和氢键网络之间的质子转移机理。模拟及计算表明Me4N+OH-离子包合物中OH-与其相连的水分子间可形成低垒氢键,具有相对较小质子转移能垒(约1.99 kcal/mol),表明正常情况下表现为一个非常快速的转移过程。特别有意义的是,OH-动力学模拟分析证实由于其动态特性OH-可与其相邻的H2O形成亚稳态的暂态共价氢键单元(OH-…H+…OH-),而整个质子转移过程可表现为低垒三阱质子转移位能面。由此大大加快了质子转移,无疑有效促进了 Me4N+OH-包合物中OH-离子的快速迁移。此外,根据深入的电子分析进一步建立了 OH-离子迁移与微电子性质之间的直接联系:OH-离子的迁移活性与费米能级附近的“电子口袋”的容量大小以及OH-离子及其氢键供体之间的相互作用程度密切相关。因此,我们的研究提出了对离子包合物中OH-离子迁移的微观理解,并为设计高性能离子固体导体材料提供了理论基础。综上所述,本文主要采用量子化学计算及从头算分子动力学模拟等方法对包合水合物的结构、状态、磁性和氢氧根迁移动力学等方面进行了系统的研究,并详细讨论了包合水合物独特的溶剂化效应、氧气包合物特殊的超交换耦合机理、应变效应引起的氧气包合物的磁耦合特性的变化及离子型包合物氢氧根的迁移机理。近几年来,功能性材料越来越受到科研工作者的关注,深入探究包合水合物冰晶材料的各种潜在性能,必定将为探索新型冰晶材料的应用提供重要的理论依据和借鉴。