论文部分内容阅读
通信技术的不断发展和个人通信的设计目标将促使因特网、多媒体以及移动通信等技术的结合越来越紧密,并要求下一代无线通信提供高速可靠的综合数据通信业务。在高达几Mbps的传输速率下,由于传输符号的符号周期小于信道的时延扩展,从而产生符号间干扰(ISI)。因此在利用传统的单载波调制方式进行高速率无线通信时需使用多抽头均衡器,从而使系统的复杂度大大增加。研究表明,如果多径信道的时延扩展(信道记忆长度)远小于一个传输符号的符号周期,则由多径传播造成的符号间干扰可以忽略不计。因此,我们可以利用多载波传输技术在不降低信息传输速率的条件下使信道中的传输符号的符号周期远大于多径信道的时延扩展,从而可以有效地对抗由多径传播造成的ISI。 正交频分复用(OFDM)作为一种多载波调制技术,成为下一代无线通信研究中的一个热点。它具有抗多径干扰能力强、频谱利用率高等优点。然而OFDM技术也存在着一些缺点,如容易受频率偏移影响、符号同步困难以及有较大的峰值平均功率比(PAPR)等,这些问题都制约着OFDM在无线通信中的应用,因此,现在人们对OFDM所进行的研究也主要集中在这些领域。 滤波多音调制(FMT)相对于OFDM是一种新型的多载波调制技术。该技术的主要特点是各子载波具有很高的频谱约束性,对系统频率偏差不敏感。FMT克服了OFDM易受频率偏差影响的问题,但也由于滤波器组的存在而在系统中引入了ISI。因此,FMT中需要引入每个子信道均衡技术来消除滤波器组的影响。 FMT和OFDM两种多载波调制技术设计的出发点不同,因而被用于不同的通信标准中。本论文主要研究滤波多音调制(FMT)在移动通信中的应用。由于FMT系统中多径信道和滤波器组都引入符号间干扰(ISI),系统的ISI较为严重,为了获得较好的系统性能,本论文重点研究了FMT系统中的均衡技术。 无线通信信道的特性在很大程度上决定了移动通信系统所能达到的性能指标。因此,深刻地认识和理解无线通信信道,对于研究和设计移动通信系统至关重要。论文第一章首先介绍了无线传输环境的特点及无线信道对接收信号造成的大尺度衰落和小尺度衰落,以及它们对不同带宽传输信号的影响;然后简述了FMT