【摘 要】
:
三维图形绘制在游戏娱乐、虚拟现实、科学计算可视化等众多领域有着广泛应用,而且在实时和真实方面的绘制要求越来越高。近年来,软硬件的计算性能得到了很大提升,但是面对数据规模的日益增长,大规模数据的实时绘制面临巨大挑战。本文主要针对体数据和地理地形数据的真实和实时绘制技术展开研究。对于精度高、体量大的体数据,三维可视化计算量大,同时增加光照计算更加重了计算负担。大规模地理地形数据一直存在如何高效处理和绘
论文部分内容阅读
三维图形绘制在游戏娱乐、虚拟现实、科学计算可视化等众多领域有着广泛应用,而且在实时和真实方面的绘制要求越来越高。近年来,软硬件的计算性能得到了很大提升,但是面对数据规模的日益增长,大规模数据的实时绘制面临巨大挑战。本文主要针对体数据和地理地形数据的真实和实时绘制技术展开研究。对于精度高、体量大的体数据,三维可视化计算量大,同时增加光照计算更加重了计算负担。大规模地理地形数据一直存在如何高效处理和绘制的问题。同时,反走样技术在数据绘制中能够显著增强视觉效果,减少图像走样、闪烁,但会带来额外的绘制开销。数据规模的增长无疑加重了各种绘制技术的计算开销,即便是提高绘制性能的并行绘制技术在面绘制和体绘制上还存在诸多挑战。针对上述技术问题,本文的主要工作和创新点包括以下方面:(1)数据并行化体绘制及光照计算在基于切片和光线投射两种主流体绘制方法基础上,针对光照计算量大的问题展开性能可扩展研究。针对基于切片体绘制在多绘制遍全局光照计算效率低的问题,提出单绘制遍多切片(Multi-Slice Per Pass,MSPP)算法,从数据与算法并行层面提升绘制能力。在相同切片数量下,MSPP算法可以提高半角切片(Half-Angle Slicing)算法大约两倍的性能。针对光线投射体绘制采样复杂导致光照计算量大的问题,提出基于切片的光线投射(Slice-based Ray Casting,SBRC)方法提升绘制效率和效果。首先,以光源为视点逐切片绘制体数据的整个几何体切片的光照信息到光照衰减缓存。其次,在光线投射过程中,利用光照衰减缓存计算采样点的光照影响,包括体积阴影、软阴影及散射等效果计算。SBRC算法只需要一个绘制遍的时间开销,并且通过变化切片数量和每个切片的分辨率实现可扩展的绘制性能。实验表明,以上方法能够大幅提升体数据的绘制效率和效果,满足性能可扩展的体数据绘制要求。(2)大规模地形数据高效组织与绘制三维地理地形绘制主要包括地理数据组织和三维地形构建两个主要过程。为了使地形绘制发挥最佳性能,并且支持层次细节(Level of Detail,LOD)及Mipmap技术提升绘制性能,提出一种灵活的数字高程模型及数字正射影像经纬度范围一致的无缝划分策略,并对每一块地形瓦片采用分组、分段、四边形网格的组织方式,快速生成具有LOD高效调度的真实三维地形。实验表明,该方法能够快速构建性能可扩展的三维地形,减少绘制调用。(3)数据绘制中的反走样技术针对延迟着色阶段开启硬件反走样方法无法直接兼容的问题,提出子像素连续边界反走样(Sub-Pixel Reconstruction Continuous Edges,SRCE)方法。首先,开启多重采样反走样绘制场景到几何体缓存(Geometry Buffer,G-Buffer)。其次,在子像素上利用切比雪夫不等式通过概率统计检测边界像素,以及标识边界像素和普通像素减少着色线程一致性开销。再次,以#过滤方法从子像素上重构连续边界。最后,自适应着色边界像素进行反走样处理。SRCE方法使三维物体边缘的“阶梯”效应最小化,同时还可以结合后处理或时间反走样技术增强图形绘制效果。针对延迟着色技术与覆盖采样反走样(Coverage Sample Anti-Aliasing,CSAA)不兼容的问题,提出基于延迟着色技术的大场景反走样绘制架构。该架构能够针对不同绘制对象使用不同的反走样级别,减少延迟与卡顿,从而平衡效果与效率。实验表明,以上方法能够有效提高数据的绘制质量,同时平衡绘制性能。(4)大规模数据并行绘制虚拟化框架在主流并行绘制框架研究基础上,结合虚拟化技术设计了一种三维图形并行绘制虚拟化框架(Parallel Rendering Virtualized Framework,PRVF),提高体绘制、面绘制及反走样技术在大规模数据上的算力结构并行绘制能力。以Equalizer作为并行绘制中间件,灵活组织并行绘制各功能模块,虚拟化各类绘制资源作为绘制单元,按需调度及管理。综上所述,本文研究体数据及地理地形数据在实时绘制方面的一系列关键技术问题,充分提高真实与实时绘制能力,通过从数据、算法和算力结构等并行层面有效提升大规模数据绘制的实用性。
其他文献
乳腺癌是多数国家女性人群中发病率最高的癌症,研究表明,乳腺癌的早期准确诊断并及时治疗能够大大降低其致死率。乳腺X光检查是全世界范围内使用最广泛的早期乳腺癌筛查手段之一,也是唯一被证明可以显著降低乳腺癌带致死率的医学影像学方法。使用乳腺X光进行乳腺癌筛查时,会产生一系列乳腺X光图像数据,放射医师根据这些图像数据进行良恶性诊断,而诊断结果与医生个体经验水平有着直接联系。随着计算机技术的发展,计算机辅助
新世纪以来,随着“中非合作论坛机制”的建立,中非战略合作伙伴关系的确立,尤其是中非命运共同体的构建,中国对非洲援助秉承“义利相兼”的理念,充分彰显“平等、互助、互惠、精准、包容”的援助特征,对非洲援助的力度和深度都呈现出前所未有的提升,在国际对非洲援助领域发挥着举足轻重的作用。面对国际风云变幻,中国坚守和平与发展的时代主旋律,构建中非命运共同体将成为新世纪中国对非洲援助的首要目标和行动方向。虽然国
图像和文本是当今两种主要的信息载体,其中图像具有生动形象的特点,而文本概括性强,能够以简练的形式传递信息。图像字幕生成旨在让计算机自动地使用文本对给定的图像加以描述,其在图像检索、人机对话、盲人导航、自动安防等应用中被广泛使用。本文基于深度学习对图像字幕自动生成进行研究,具体的工作包括基于全局注意力机制的图像字幕生成、基于词性先验的图像字幕生成、基于对偶学习的图像字幕生成、基于层次主题网络的故事生
人脸识别作为人工智能的典型应用之一,具有重要的实用价值和研究意义。近年来,基于深度卷积神经网络的人脸识别技术取得了突飞猛进的发展,但主要集中于二维可见光人脸识别的研究,在真实无约束场景中仍然面临许多挑战和难题。随着人脸识别应用的推广和传感器技术的发展,异质人脸识别需求应势而生且日益增大。但异质人脸图像间显著的外观变化,使现有人脸识别系统面临识别精度大幅下降的问题。本文对异质人脸识别问题及其解决方案
心音信号和心电信号作为常见的医疗时序数据,具有易采集、价格低廉、无创无损及重复性好等特点,在医学临床中被广泛应用于疾病预防、初步诊断及病情的长期监测。对这些医学时序信号进行准确处理与分析,可更好地协助医生把握病情,制定疾病预防和治疗方案,从而提升全社会的整体健康水平。经过几十年的发展,传统信号处理方法对心音信号和心电信号的分析与应用已取得长足进步,但处理该类时序数据时仍然面临诸多挑战。尤其是在面对
现代图形学应用的飞速发展对超大规模复杂场景绘制、高分辨率显示呈现、高真实感用户体验以及实时绘制效率提出了愈加严峻的挑战。尽管计算机硬件性能在近年来得到了极大提高,但仍然无法满足越来越高的需求。作为并行计算在图形学领域的具体运用,并行图形绘制系统成为解决上述问题的有效方案之一。但是多节点间的绘制任务分配一直是制约并行图形绘制系统整体性能的瓶颈,因此,研究如何实现绘制负载平衡成为影响最终绘制效果的关键
由于互联网多媒体技术的快速发展、智能手机的广泛使用以及社交网络的不断普及,人们能够随时随地在互联网上分享有趣的内容,使得互联网上不同模态的多媒体数据(如文本,图像和视频等)呈现爆炸性增长、海量性集聚的特点。如此大规模的数据标志着多媒体大数据时代的到来,同时给基于多模态学习的研究和应用带来了新的机遇和挑战。随着以深度神经网络为代表的人工智能技术的迅猛发展,如何基于深度神经网络模拟人类大脑的认知和理解
深度学习又称为深度神经网络,是人工神经网络的一种,是一种通过堆叠多层非线性变换方法对高复杂性数据进行建模的算法。在图像处理领域,深度学习主要是指深度卷积神经网络(Deep Convolutional Neural Networks,简称DCNN)。人工神经网络的概念自上个世纪四五十年代被提出以来,几经发展和沉寂,在本世纪初又开启新一轮发展热潮,展现出强大的生命力。图像目标检测的目的是判断图像中是否
计算机科学融合音乐学并推动音乐学自动化智能化发展催生了两个大的研究方向:音乐信息检索和音乐生成。其中,音乐检测是音乐信息检索领域的一项关键任务,它聚焦于研究如何从音频中检测出音乐事件及发生的位置;音乐生成是人工智能在艺术创作方面的一项探索,它关注于研究能让计算机自动进行音乐创作的算法。随着数字音乐数量的与日俱增,神经网络方法善于学习海量数据以及具备强大建模能力的特点使其成为近年来音乐检测和音乐生成