论文部分内容阅读
惯性约束聚变是获得干净的聚变能源的一种理想途径。中心点火方式需要的激光驱动能量非常大,目前的技术条件难以满足要求。因此为了减少所需的驱动能量,利用超短激光脉冲的“快点火”是目前极具吸引力的聚变点火方式。它的中心思想是将压缩与点火分开,热核燃料的高密度压缩由通常的内爆过程完成,而满足点火条件的热斑则是由相对论强度激光从外部入射形成。这一构想的大幅度节省了驱动内爆的激光能量,同时放宽了控制流体力学界面不稳定性的要求。 快点火中的一个关键问题是激光能量转换为超热电子并传输到靶心。靶丸周围存在几百微米长的冕区等离子体,会使得入射激光分裂成丝或是激发各种参量不稳定性,且激光在传输过程中有很大一部分能量被冕区吸收,仅有一小部分转换为超热电子的能量。近十年来,研究人员提出了各种点火的设想,其中导向锥快点火方案具有如下优点:使点火脉冲直接传入高密度区;降低激光与冕区等离子体相互作用产生的各种不稳定性影响;导向聚焦点火激光,使更多的激光能量沉积在热斑区。然而激光与引导锥内等离子体相互作用的细节尚不清晰,需要通过相应的基础研究,深入了解锥的导向聚焦作用以及如何提高对点火有益的超热电子数目。 本论文首先简单介绍了惯性约束聚变的概念,中心点火及快点火的基本原理。 第二章简要介绍了各种的快点火方案,第二节着重介绍了国际上对导向锥点火方案的研究成果和进展。 超热电子的产生和输运是快点火物理中所关注的重点之一,其产生机制对超热电子的特性具有重要的影响,因此第三章着重介绍了各种超热电子的产生机制。 第四章主要介绍自己的工作—“金锥对靶背向产生超热电子的影响”的实验研究。采用功率密度为1018Wcm-2的皮秒激光辐照金锥靶,测量了前向(靶背向)超热电子的全空间分布及能谱。与相同实验条件下的平面金薄膜靶进行对比,实验结果发现,锥形靶条件下靶背向产生的超热电子在2~2.5MeV附近有大幅度增加,表明了锥形靶对超热电子的产生具有重要的影响:30o金锥靶显著提高了靶后的超热电子产额,间接证实了锥形靶对短脉冲激光有导向聚焦作用;在实验中还发现,锥形靶条件下靶背向超热电子的空间发散角大于平面靶。经初步分析,这可能是由于啁啾脉冲放大激光所固有的较高脉冲前沿产生的预等离子体造成的影响;15o锥形靶情况下,测量得到的电子剂量远低于平面靶。经分析原因可能有两点:一是脉冲前沿噪声产生的预等离子体向外膨胀,使得相互作用区域处于离焦位置。二是向靶内输运的超热电子传输的距离很长,通过碰撞和电场阻滞的方式损失了大量的能量。 第五章简单对全文作总结并展望后续实验。