【摘 要】
:
对含参数(常数或函数)的偏微分方程(组)进行对称分类是经典Lie对称理论在微分方程中的主要应用之一,而获得分类方程,求解确定方程组是进行有效对称分类的关键所在,实际问题中
论文部分内容阅读
对含参数(常数或函数)的偏微分方程(组)进行对称分类是经典Lie对称理论在微分方程中的主要应用之一,而获得分类方程,求解确定方程组是进行有效对称分类的关键所在,实际问题中这些参数的具体形式依赖于所考虑系统的实际物理意义,因为大部分数学物理方程都具有很好的Lie和非Lie对称群,所以人们首选Lie对称分类方法来确定任意函数的具体形式,确定任意函数的具体形式,并且给出其相对应方程的非平凡对称群,这是研究偏微分方程所需要解决的主要问题之一,不过除了一些平凡的情况之外,确定偏微分方程(组)对称分类是非常困难的,对称分类问题中,我们对偏微分方程(组)的每一类参数要确定其所有对称,其中不仅确定对称本身是个难题,由参数引起的确定超定方程组可解性也是需要解决的困难之一,本文主要研究工作如下: 第一,对含两个任意函数f(u)、g(v)的二维边界层系统进行了Lie对称分类,并且对其中的几类构造了不变解。 第二,对含两个任意函数f(u)、g(x)的扰动广义Kadomtsev-Petviashvili方程进行了近似对称分类,并且对其中的几类构造了不变解。 第三,对含任意函数K(u)的扰动广义Hopf方程进行了近似势对称分类,
其他文献
多状态系统是一类具有广泛应用的复杂系统。随着此类系统逐步呈现出大型化、复杂化、精密化发展趋势,多状态系统的可靠性建模及分析变得尤为重要。多状态系统广泛存在于工程实
本文包括两章,第一章为绪论,第二章利用山路定理和喷泉定理研究一类非线性Schr(o)dinger-Poisson系统在R3上解的存在性以及多解性.
下面来介绍本文的主要工作.
本文
在专家系统、模糊数学、人工神经网络这些人工智能技术之后,用于优化的进化算法已经成为又一个热点课题.并且被广泛应用于很多科学领域.而且也成功地应用在解决结构设计或网
摘 要:文章从建设项目申请用地预审的时段、法律法规依据、预审原则、审批权限、建设项目申请的审查依据、需要提交的预审材料、审查主要内容及用地预审过程中应注意的问题等8个方面详细介绍了用地预审的政策和要求,为建设项目的土地预审工作提供了强有力的法律政策支撑。 关键词:建设项目 用地 预审 一、建设项目申请用地预审的时段 根据《建设项目用地预审管理办法》(国土资源部第42号令),需审批的建设项目在
图像去噪是数字图像处理领域中最基础也是最重要的研究课题之一,对其研究有着很重要的理论意义和实际意义.Rudin和Osher提出的整体变分图像复原模型(ROF模型)能在去除噪声的同时
模糊对策理论自创立以来倍受关注,被广泛地应用到各学科领域。对策论与模糊数学理论相结合,打破了经典对策模型不能描述对策中原有不确定信息的局限性。而区间数理论作为模糊数
带有粘性的Van der Waals流体,是流体力学中很重要的一类流体。但由Van der Waals型牛顿流体的流动、热传导等组成的非线性的偏微分方程组,在求解上有很大的困难。在数值模拟时,Van der Waals型流体的模型的数值解和实际的问题有很大的差别。这种差别主要是由于这种问题在物理上的不稳定,和数学上的不适定性。为解决在数学模拟时出现的振荡现象,在前人的研究中,对这种模型进行了改进。
本文为供应商选择决策者提供了一个风险管理方案。该方案是基于多产品,多资源以及风险控制的问题背景,为决策者指定最优的供应商组合方式和最合理的订单量分配方法。在实际的选
随着社会智能化程度的提高,人工神经网络(Artificial Neural Networks,ANNs)的应用不断渗透到社会发展的许多重要领域.相对传统的人工神经网络算法,随机权网络(Random Weight
拓扑学是数学的一个主要研究领域,它关注的是空间的最基本的性质,比如说连通性,分离性等等.更加精确的讲,拓扑学主要关注可以在连续变形中保持不变的几何性质.现在拓扑学已经有一