论文部分内容阅读
结构物的轻量化设计对于降低产品生产和使用成本、减少长期服役能耗、提高产品性能都具有重要的意义,随着当代能源与资源的短缺及竞争的加剧,轻量化设计受到各方的关注。而随着制备工艺的成熟,超轻金属多孔材料(点阵类桁架材料、线性金属蜂窝材料、泡沫金属)越来越多的应用于工程实践,其卓越的比刚度、比强度及多孔连通性使其成为新一代轻质多功能的结构功能材料。本论文围绕微结构具有周期性排布特点的超轻金属多孔材料,针对结构与材料性能分析方法与协同优化设计两方面展开了一系列的研究工作。具体内容如下:1.描述并实现了适用于类桁架点阵材料等效性能预测的均匀化方法及列式:研究了基于Dirichlet型、Neumann型及周期性边界条件下的代表体元法预测类桁架点阵材料等效弹性模量方法;对代表体元法所预测的弹性性能随参与计算的单胞个数n变化而变化的尺寸效应进行了研究,指出Neumman边界条件下的单胞边界变形协调性或者Dilichlet边界条件下的边界节点力的平衡性,是产生上述尺寸效应的本质原因,也可以作为判断是否产生尺寸效应的简单判据。开展了基于均匀化理论的2D桁架材料极值剪切性能的形状优化研究,并对其中出现的奇异现象进行了分析。(第二章)2.利用数值模拟,定量地对比了将LCAs(一种重要的类桁架点阵材料)材料等效为经典的柯西介质与微极连续体等效介质的计算精度,发现由柯西介质模型计算得到的位移和应力都存在较大的误差,具有非局部本构的微极连续体等效模型是较为合理的选择。基于能量法等效分析的结果提出了一种映射计算单胞构件微观应力的快速算法。将具有正方形单胞的LCAs材料等效为微极连续介质,运用拓扑优化思想,以反映材料宏观特性的材料相对密度ρ和微观特性的微单胞孔径L为设计变量,进行结构应力优化。并对经典的小孔应力集中算例,分别以最小化孔边应力、结构最大应力最小、最小化孔边应力与材料屈服强度比值为目标,给出了结构与材料一体化协同设计结果,同时探讨了材料铺角对优化结果的影响;最后根据连续体等效介质模型优化的结果,建立了细致的刚架模型,通过离散建模计算验证了本文方法的有效性。(第三章)3.针对可以通过基本设计模块周期性拼装而成的结构,研究了此类结构和模块协同优化设计的方法和模型,同时考察了基本设计模块的绝对尺寸对优化结果的影响。通过在结构和设计模块两个层次上分别引入独立的密度变量,实现了基于最优设计模块拼装的宏微观协同优化设计,采用拓扑优化技术和子结构分析方法,探讨了此种情况下最优的设计模块构形以及这种模块在结构尺度上的最优分布。(第四章)4.基于可制造性考虑,研究了由宏观上均匀的多孔材料制成的结构与材料协同优化设计问题。待设计的结构受到给定的外力和温度载荷作用,优化设计旨在给定允许使用的材料体积约束下,设计宏观结构的拓扑及多孔材料的微结构,使得结构柔度最小。建立了一种宏观结构与微观单胞构型协同优化设计的模型和方法,在此方法中,我们引入宏观密度和微观密度两类设计变量,在微观层次上采用带惩罚的实心各向同性材料法(SIMP:Solid Isotropic Material with Penalty),在宏观层次上采用带惩罚的多孔各向异性材料法(PAMP:Porous Anisotropic Material with penalty),借助均匀化方法建立两个层次间的联系,通过优化方法自动确定实体材料在结构与材料两个层次上的分配,得到优化设计。讨论了温度变化、材料体积及计算参数对优化结果的影响。研究结果表明只有机械载荷作用时,基于柔顺性指标的最优微单胞构形往往是各向同性的实体材料;而同时考虑热和机械载荷时,采用多孔材料可以降低结构柔顺性。(第五章)5.针对工程中常见的旋转对称结构,将它划分为有限个基本设计模块,而在设计模块内应用基于均匀化方法的结构与材料协同设计优化设计策略,对同时作用有集中力与离心力的旋转对称结构,给出了最优的模块构型以及构成这种模块的材料的最优微结构形式。研究了给定材料用量、不同载荷组合以及非可设计域对协同优化结果的影响,发现当同时作用有离心力与集中力时,多孔材料可以有效的提高系统刚度。(第六章)