Banach空间中随机算子的随机不动点定理

来源 :南京信息工程大学 | 被引量 : 0次 | 上传用户:fdsa5218
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
本文研究Banach空间中随机算子的随机不动点的存在性与迭代逼近问题.利用随机Picard迭代证明了几个随机算子的随机不动点的存在唯一性定理,建立了随机版本的Mann迭代、Ishikawa迭代等迭代格式的收敛性定理,讨论了不同随机迭代序列收敛到随机不动点的等价性,对其收敛速度作出了比较. 本文可分为以下四章: 第一章主要介绍了随机不动点理论研究的相关背景、研究现状,列出了本文后面所需要的一些概念与结果. 第二章中利用随机Picard迭代证明了随机压缩算子、弱压缩算子和Zamfirescu算子的随机不动点的存在唯一性定理,建立了随机版本的Mann迭代、Ishikawa迭代等迭代格式的收敛性定理. 第三章讨论了几种不同随机迭代序列收敛到随机不动点的等价性问题,比较了几种随机迭代序列收敛到随机不动点的速度. 第四章中应用随机不动点定理研究了Hilbert空间上一类随机算子方程的解的存在性.
其他文献
学位
文章研究了分数阶导数定义下的非保守力学系统的Noether理论。分别讨论了Riemann-Liouville导数和联合Caputo导数定义下非保守系统的分数阶Noether准对称性及其守恒量,建立了
多元纵向数据是指对研究个体的多个响应变量在不同时刻进行重复测量而得到的一组实验数据。因多个响应变量之间往往存在横向相关,而单个响应变量还可能存在随时间变化的纵向相
本文对单调集值测度空间上的一些重要定理及积分进行了研究.主要包括两部分:  第一部分,对一类取值于m维空间子集的单调集函数,引进了单调集值测度的概念,定义了单调集值测度
微分对策是用微分方程(组)来描述对策现象或规律的一种对策。根据有无支付泛函,微分对策分为定量与定性微分对策两大类。每一类中按照对策的信息结构划分为确定型与随机型微分对
随机和在应用概率的许多领域中有广泛的应用,如金融保险模型,排队论,网络通信等.近年来国内外许多学者对此进行了大量的研究.令{X,Xk:k≥1)为随机变量列,共同的分布函数为F(x)=1-F(
将代数簇分解为不可约的或等维的(非混合的)是经典代数几何研究的主要课题之一,是现代几何设计的一种手段,具有很强的应用前景和理论意义,是目前国内外代数几何研究的一个热点.
生态学研究中大多是以群体为基本单位收集或分析资料,从而研究暴露与疾病关系的内容,由于我们只知道研究人群中的暴露数和非暴露数,患病数和非患病数,但不知道暴露者中有多少发生
常微分方程边值问题在理论和应用上,都有着非常重要的作用,它可以用来描述很多物理、生物和化学现象。目前,对常微分方程边值问题的研究大部分集中在二阶常微分方程两点边值问题