【摘 要】
:
信息通信设备和精密电子设备的飞速发展导致日渐严重的电磁波辐射问题,这极大地损害了人体健康。因此,探索高性能电磁波吸收材料并将电磁波能量转换为对人体几乎没有危害的其它形式的能量就变得越来越重要。由于在GHz范围内具有高饱和磁化强度和高Snoek极限,金属软磁材料(例如铁、钴、镍及其合金颗粒)显示出比其它非磁性金属材料更理想的电磁波吸收能力。另一方面,碳材料,尤其是石墨烯,由于其具备低密度、高化学稳定
论文部分内容阅读
信息通信设备和精密电子设备的飞速发展导致日渐严重的电磁波辐射问题,这极大地损害了人体健康。因此,探索高性能电磁波吸收材料并将电磁波能量转换为对人体几乎没有危害的其它形式的能量就变得越来越重要。由于在GHz范围内具有高饱和磁化强度和高Snoek极限,金属软磁材料(例如铁、钴、镍及其合金颗粒)显示出比其它非磁性金属材料更理想的电磁波吸收能力。另一方面,碳材料,尤其是石墨烯,由于其具备低密度、高化学稳定性、高电导率和可调的介电常数等优势,在电磁波吸收领域成为了研究的热点。本文通过简单的溶剂热法、湿化学法以及后续退火处理获得海胆状碳包覆钴镍合金复合材料(CoNi@NC)以及相关材料。并详细研究了该材料材料作为电磁波吸收体的吸波性能以及电磁波损耗机理。研究内容如下:1、采用了简便的制备方法将含氮的碳源包覆在海胆状的钴镍前驱体上,通过700℃高温退火形成了氮掺杂碳包覆的钴镍合金复合材料。并且所制备的CoNi@NC复合材料完好继承了海胆状微观形貌。同时制备了碳包覆钴金属复合材料(Co@NC)与钴镍合金材料(CoNi)作为对照组,对所有材料进行了相应的结构表征与物相分析。通过微观表征得知,CoNi@NC材料的海胆状结构表面的纳米针长度约为2.5μm,直径约为60-70nm,其内部钴镍合金颗粒粒径在12-38nm之间,表面包覆的石墨烯层数大约为7层,二者形成了核壳式的结构。2、将CoNi@NC、Co@NC和CoNi材料制作成了吸波性能测试体,在2-18GHz频率范围内测量了它们的电磁参数,计算得出其在不同厚度下的反射损耗R_L值。结果表明,CoNi@NC样品的电磁波吸收性能优于其它样品,与其它文献中的磁性金属/碳复合材料相比,本文所制备的CoNi@NC样品的电磁波吸收性能更具有竞争力,在电磁波吸收领域值得深入挖掘其应用潜力。3、通过探讨反射损耗(二维和三维)、阻抗匹配、复介电常数、复磁导率、Cole-Cole半圆、涡流损耗和衰减系数等来对CoNi@NC样品的电磁波吸收及损耗机制进行剖析。结果表明,CoNi@NC样品拥有更多的介电损耗机制,以及由交换共振主导的磁损耗机制。此外,该样品独特的海胆状结构拥有“类天线”的纳米针阵列,能有效捕捉外界电磁波,大大增加了电磁波在结构内部的多重反射与散射次数,增强了电磁波衰减能力。
其他文献
金属有机骨架材料(MOFs)具有比表面积大、热稳定性好、孔道结构规则有序、孔内和表面可官能团修饰等诸多独特性质,因而在多种领域存在广阔的应用前景。本研究通过溶剂热法制备了一种低成本、高吸附性能、可再生重复利用、环境友好的新型MOFs吸附材料,该材料是以Cu2+为中心离子,均苯三甲酸为有机配体的具有空间三维结构的金属有机骨架材料Cu3(BTC)2。通过对其进行功能化修饰,可应用于吸附水中的重金属Cr
随着新农村建设、城镇化、美丽乡村、全域旅游的兴起,作为乡村绿色基础设施中的重要一项,乡村公园的建设越来越多,也越来越受到重视,如海口 2018-2035,将建成14处乡村主题公园,江西逐步推动—乡镇—公园的目标。由于我国对乡村公园研究的著作理论相对较少,发展还不够成熟,从乡村公园相关评价及现实案例可以看出乡村公园的建设存在着一些问题,主要体现在容易盲目模仿城市公园建设模式,造成浪费、资源利用不到位
随着经济快速发展,我国农用地重金属污染状况持续恶化。重金属元素在土壤中不能发生降解,其迁移积累不仅会影响区域生态安全,也会给人体健康带来潜在危害。因此关注研究土壤中重金属的污染状况及其迁移规律具有重要意义。本文首先分析研究区土壤中Cd、Ni、As、Zn、Cu的污染情况。然后研究淹灌灌溉方式下重金属在0-40 cm与40-80 cm土壤中迁移累积情况。在此基础上,研究去离子水淹灌、去离子水干湿交替、
在橡胶增韧聚合物体系中,为避免体系强度和模量的大幅度下降,往往在体系中加入无机刚性粒子对其进行增强。虽然理论和实践都证明橡胶完美包覆刚性内核的核壳粒子是实现增韧体系刚韧平衡的最佳方法,但是制备具有完美核壳结构的核壳粒子非常困难。在大量的研究和实际加工过程中,人们只是通过将粒子与橡胶做母料的方法来实现粒子在橡胶相中选择性分布,形成所谓沙袋结构。此时体系的冲击韧性的确得到较大提高,但拉伸强度并没有得到
在能源日益紧张的今天,人们更加重视清洁能源。其中热电材料作为一种清洁新型可再生能源材料为人们所熟知。它具有低损耗,几乎无污染,可靠性高等优点,有望大幅提高能源利用率,从而缓解环境污染。Fe_2TiSn为全赫斯勒合金的一员,同时也被预测具有良好的室温热电性能。然而以往的制备方法采用的是电弧熔炼法进行合成,能耗较高、制备时间长且对仪器设备有一定的要求。同时,合成的本征样品的热电性能较差,主要是因为样品
铬是地球上的主要重金属之一,在电镀,制革,钠以及氯酸钾的生产等行业中,通常以高毒性六价形式(即Cr(Ⅵ))存在于行业废水中,如果不经过深度处理,六价铬在饮用水中累积会对人类生活与生存环境带来严重危害,因此含Cr(Ⅵ)的废水应在排放前进行处理。吸附技术因为其高效、成本低等优异特性展现出较高的实用价值。本研究首先选用可降解的阳离子表面活性剂HACC(壳聚糖季铵盐)对4A沸石分子筛进行改性,成功地合成了
近年来,电梯等专用设备数量不断增加,且增长率逐年递增。如此巨大的电梯数量下,电梯安全事故频繁发生,因此对电梯安全监测的研究变得越来越紧迫和必要。这些年机器学习广泛应用于各个领域,并产生很多优质的成果。机器学习这一技术在电梯安全监测上也具有可观的应用前景。目前的电梯安全监测技术以及实现的方法都只能在部分电梯设备使用,且普遍造价昂贵难以推广。本文以电梯设备运行时的加速度信号和气压海拔信号为切入角度,实
微小RNA(microRNA,miRNA)是一类广泛存在真核生物和病毒中,长度为19-24nt的内源非编码小RNA,是生物体内复杂的基因调控网络的关键组成部分。在植物中,miRNA长度大约为21nt,通过直接剪切靶基因mRNAs调控植物的生长发育、表观遗传、生物和非生物胁迫响应等过程。本研究基于CRISPR-Cas12a基因组编辑系统定向敲除水稻OsMIR394基因,创制靶位点纯合且稳定遗传的Os
自从石墨烯被成功制备和表征以来,二维材料以优异的电学性能和光学性能受到人们的关注和研究。通过选择性地蚀刻MAX(三维分层三元碳化物和氮化物,其中M,A,X分别代表早期d区过渡金属,主族sp区元素,碳和/或氮)中的“A”元素得到的MXenes(二维层状碳氮化物)是近十年来比较有代表性的一种二维材料。MXenes在以往研究中表现出极为优异的光学性能。Ti_3C_2是Mxenes家族中最重要的成员之一,
产业兴旺、生态宜居、生活富裕作为乡村振兴的外在塑形,而经过几千年农耕文化的传承,传统乡村文化始终是中国社会文化体系的根和魂,推动乡村文化振兴,进而实现乡风文明是为乡村振兴铸魂。因此,当前亟需提升体现时代发展趋势的公共文化服务能力,促进基本公共文化服务标准化、均等化,保障群众基本文化权利,推进传统文化的创新和发展,为实现乡村振兴,进而实现“两个百年”奋斗目标提供有力支撑。本文以自贡市大安区这一西部传