论文部分内容阅读
螺旋离心泵是一种结构特殊并且较为新颖的泵,其独特的螺旋离心式叶轮可以充分发挥螺旋泵和离心泵的优势。作为污水泵使用时,螺旋离心泵的效率高于旋流式杂质泵和离心式杂质泵。除此之外,螺旋离心泵的无堵塞性、无损性以及吸入性能均优于一般离心泵。但是单叶片螺旋离心式叶轮由于结构不对称,存在较大的偏心,在运行时会产生较大的离心力,同时叶轮所受的径向力也较大,使得转子系统的振动问题较为严重。针对螺旋离心泵的水力平衡问题,本文所做的主要工作以及得到的主要结论如下:(1)对螺旋离心泵的设计方法进行了简要的介绍,结合具体的设计参数,应用方格网保角变换法对螺旋离心泵叶轮进行了水力设计,利用Pro/E5.0对螺线离心泵进行三维建模,并对叶片进行了高斯曲率检测,发现在叶轮进口处轮毂侧叶片高斯曲率变化较快,此处叶片光滑程度较低。(2)利用CFX15.0对螺旋离心泵的内部流场进行了稳态和瞬态数值模拟,对稳态计算时径向截面、轴截面和叶轮表面上的压力分布和速度分布进行了分析,发现在叶轮进口处存在脱流现象,在叶轮流道较大范围内存在漩涡,蜗壳中存在明显的二次流动,这不利于蜗壳内流体的能量转换,影响了泵效率的提高。随着叶片包角的增大以及叶轮半径的增大,叶轮表面的压力逐渐增大,叶片工作面根部存在低压区。由于叶轮结构和叶轮表面的压力分布都不对称,这使得叶轮所受的径向力较大。(3)介绍了常用的径向力计算方法,对瞬态计算时叶轮所受的径向力分布以及蜗壳内部的压力脉动进行了分析,发现叶轮上的径向力在不同流量工况下均呈周期性变化,周期和叶轮旋转一周所用的时间相同。在设计流量工况下叶轮所受径向力的最大值相对较小,偏离设计流量工况越远,最大径向力的数值也越大,小流量工况下和大流量工况下径向力最大值出现的方位相反。径向力由恒定量和脉动量组成,随着频率的增加,脉动峰值逐渐减小。压力脉动的主频为轴频,压力脉动的峰值出现在主频及其倍频处,并且主要为低频脉动。(4)采用基于有限元法的专业转子动力学分析软件SAMCEF Rotor对螺旋离心泵的临界转速和模态振型以及瞬态响应进行计算分析,发现随着阶次的增加,转子系统的涡动频率也逐渐变大,转子属于刚性转子,在设计条件下不会发生共振,并且转子系统的前四阶模态振型均表现为弯曲变形。当考虑径向力对转子系统瞬态响应的影响时,转子的振动过程中会体现出径向力的频率成分。(5)分析了不同的叶片出口边切割形式下转子系统的振动情况和叶轮配重对螺旋离心泵水力平衡性能的影响,发现随着叶片出口边切割角度的增大,叶轮所受的径向力逐渐减小,同时振动位移也逐渐减小,切割角度存在最优值。转子系统的不平衡类型为动不平衡,采用双面平衡法对叶轮进行平衡后,发现在“干态”和“湿态”下,转子系统的振动情况均得到改善,水力平衡性能有所提高。