论文部分内容阅读
随着高亮度、高准直性、光谱连续可调的同步辐射光源的不断升级,X射线成像技术也得到了进一步发展。对比于可见光和电子,X射线拥有波长短、穿透性强等特点,这些优点使其在无损、高分辨成像上得到了广泛的应用。此外,随着光源亮度的不断提升,具有时间分辨的原位成像方法的发展使得对非稳态科学问题的研究成为可能。为了实现对研究目标的功能成像,X射线谱学成像技术近年来得到了快速的发展。通过结合X射线近边吸收谱和X射线成像技术,可以得到样品结构和感兴趣元素价态的联合表征,从而实现样品形貌及功能的关联分析。近年来,这种联合表征技术已经应用于多个科研领域,包括能源材料、工业催化以及环境科学等。在能源材料领域中,随着消费电子产品和电动车的广泛应用,发展更高能量密度和更好安全性的锂离子电池已经成为了一个科研热点,锂离子电池是一个十分复杂的化学体系,对其进行研究通常要结合多种时间和空间尺度的表征,例如宏观尺度下的X射线衍射技术,以及微观尺度下的透射电子显微镜技术等。但在介观尺度下,只有X射线谱学成像技术可以完成对电极颗粒的形貌及化学行为复杂性的关联研究。因此,发展X射线谱学成像技术在锂离子电池中的应用研究,不仅能够填补锂离子电池正极材料介观尺度下的表征空白,也对将X射线谱学成像拓展到其他科研领域具有十分重要的意义。因此,本论文利用X射线谱学成像技术结合多种同步辐射表征技术对锂离子电池正极材料进行了材料形貌及性能的关联分析,对其失效机理、热稳定性等方面进行了研究,并进一步发展了新的信息提取方法拓展了谱学成像技术在特殊材料体系中的应用,论文主要内容包括以下4个部分:1.为了了解Li1.3Ta0.3Mn0.4O2(LTMO)材料脱锂过程中的形貌特征、化学分布及阳离子短程有序性,我们利用X射线谱学成像技术联合X射线衍射技术、中子衍射技术及DFT理论计算对脱锂过程中材料的形貌变化及关联的电化学性能变化以及局部阳离子的短程有序性进行了系统分析,建立了利用谱学成像技术研究锂离子电池材料的实验方法及数据分析方法,为利用谱学成像技术研究锂离子电池开辟了新的思路。2.为了 了解高Ni三元正极材料的热稳定性,我们在原位条件下利用X射线谱学成像技术联合软X射线吸收谱、硬X射线吸收谱、扫描电子显微镜及能量色散光谱仪在介观尺度下对Li0.5Ni0.6Mn0.2Co0.2O2(NMC622)进行了热稳定性研究,详细分析了加热过程中材料发生的形貌及过渡金属元素的价态变化,发现了加热导致的氧气释放、裂缝产生以及锂盐的析出,并对各种现象的出现进行了详细的解释,为材料改性提供了理论依据及数据支撑。同时,也拓展了原位谱学成像技术在锂离子电池领域的应用,为将原位成像技术拓展到其他领域提供了模板。3.进一步联合X射线谱学成像技术、X射线衍射技术、硬X射线吸收谱、软X射线吸收谱及X射线拉曼光谱等多种同步辐射表征手段对LiNi0.8Mn0.1Co0.1O2(NMC811)在不同尺度上进行了热稳定性研究,发现了加热过程中材料的晶格相变、过渡金属元素价态变化以及锂离子在颗粒内部的重新分布及热稳定性与颗粒尺寸之间的关系,为设计新的电池材料提供了理论依据及数据支持。同时,详细介绍了各种同步辐射表征技术在锂离子电池材料研究中的作用,建立了锂离子电池正极材料热稳定性研究的实验流程及数据处理方法,为相关研究提供了方法指导。4.为了拓展谱学成像技术在各向异性结构的单晶样品上的应用,以Li-CoO2(LCO)作为模型对其进行了谱学成像实验,发现了同步辐射偏振特性会对其谱学成像的实验结果产生影响,实验证明了常用于表征元素价态变化的吸收边能量无法用于研究各向异性单晶样品,经过对实验数据的分析,发展了基于峰值能量的信息提取算法,并通过与吸收边能量进行对比,证实了峰值能量作为特征参量能够使偏振导致的误差降到最低。并且利用新提出的基于峰值能量的信息提取算法,研究了不同脱锂状态的LiCoO2的形貌特征及关联的过渡金属元素Co的价态信息,证实了过渡脱锂会导致材料产生裂缝,且裂缝会影响材料的电化学特性。