论文部分内容阅读
近藤效应作为一个强关联体系在固体物理中有着很重要的位置。近藤效应来源于非磁性金属的传导电子被磁性杂质所散射。当系统的温度降到一个特征温度(近藤温度)以下时,杂质原子的费米能级处会出现一个共振峰(近藤共振)。而近藤共振的峰宽可以表征近藤效应的强弱且可以很方便被STM探测到。控制电子和磁性原子的相互作用对未来的纳米磁性器件或者量子信息存储有着重要的意义,所以,近藤效应的研究近些年吸引了很多人的注意。最近Li et al.的文章证明了通过量子围栏调控的表面态可以对近藤效应进行调制。单层的Ag生长在Cu(111)表面可以形成超结构。对于形成超结构的1ML-Ag/Cu(111)表面,电子态密度也会随着空间发生变化。所以在1ML-Ag/Cu(111)表面上我们期望也会出现近藤效应被调制的现象。之前的文献报道在1ML-Ag/Cu(111)表面研究Co原子的近藤效应,他们只给出单个的数据点但没有对在不同位置近藤效应进行讨论。在这篇论文中,我们研究了 Co原子在1ML-Ag/Cu(111)表面的不同位置的近藤效应。利用原子操纵,我们可以把单个Co原子放置在1ML-Ag/Cu(111)超结构表面的不同位置进而可以研究Co原子在不同位置的近藤效应。我们发现近藤共振的峰宽在1ML-Ag/Cu(111)表面的不同位置会有变化:在hcp/fcc边界(hcp/fcc boundary),Co原子的近藤峰宽几乎和态密度变化无关;但对于fcc区域,我们发现近藤效应的变化和局域态密度的变化有着很强的关联性,即近藤效应是随着位置变化的。为了去理解随着态密度变化而变化的近藤效应,我们进一步利用紧束缚近似去计算1ML-Ag/Cu(111)表面的局域态密度(LDOS)。通过对比实验和计算得出的局域态密度,我们发现1ML-Ag/Cu(111)表面态密度的空间变化的主要来自于表面态的贡献。在1ML-Ag/Cu(111)体系中不仅表面态电子,体态电子也同样贡献近藤效应,我们利用最近报道的近藤模型去拟合我们的数据。最后我们定量的给出体态和表面态的贡献大小,即磁性原子和体态电子的耦合系数(Jb)和磁性原子和表面态电子的耦合系数(Js)。这些结果表明了超结构对近藤效应的影响,也进一步证明了表面态对近藤效应的贡献。