论文部分内容阅读
自然界的生物多样性,是生物进化出各自的特征以适应生存环境的结果。自然选择在生物适应性进化中的作用,自达尔文时期以来就成为了生物学理论研究的重要部分。随着生物系统发育关系日渐完善,生物适应现象描述的丰富,从分子水平探讨自然选择和适应性进化的关系,揭示复杂适应表型下的终极规律-遗传机制,显得十分迫切。因此,本研究以高原土著鸡形目、啮齿目和兔形目这三类非常特殊的动物作为研究对象,结合序列分析、表达研究和二代测序技术等分析手段,在候选基因、通路的多个重要位置以及代谢通路的多重视角下,对三目的高原土著动物适应高原极端环境的相关适应性进化机制进行探讨。 鸟类是一种高耗能的动物(飞行和恒温),而低氧环境则制约着能量的供给,高原土著鸟类对低氧的适应引起我们极大的兴趣。考虑到线粒体作为“能量代谢工厂”,在许多动物适应高原的过程中都发挥着极其重要的作用。我们推测线粒体基因对高原土著鸟类适应低氧环境具有重要的影响。我们获得了22条鸟类线粒体基因组全序,系统而详尽地对高原鸡形目物种的13个线粒体基因的编码区进行了系统发育关系和选择压力分析。结果发现,在鸡形目中至少有四枝独立进化适应高原环境,线粒体基因ND2、ND4和ATP6分别在三个高原枝中受到正选择作用。这些结果有力的证明了线粒体基因的适应性进化在鸡形目鸟类适应高原的过程中发挥了很重要的作用。正选择位点的变化可能会影响蛋白的功能和结构,对这些正选择基因功能的探索将成为下一步研究的方向。 高原土著哺乳动物适应性进化向来是研究的热点。以往的研究发现,聚类在ATPase、DNA修复和血液与血管发育形成的这些基因在土著哺乳动物适应高原的过程中发挥着重要的作用。尽管许多研究都在关注高原动物适应性进化的分子遗传基础,但大都集中在单一基因或者单一物种上,而表型的适应是一个复杂的过程,它可能涉及多个基因的共同作用或不同物种的共同通路,所以单基因或单物种的研究有其局限性。在第四章中,我们采用7个高原土著哺乳动物在26个候选基因中开展适应性进化研究,结果发现3个应答低氧和强紫外线辐射的基因(Alkbh3,Men1,and Mylk2),在不同的高原土著哺乳动物中(鼠兔,高原松田鼠,四川姬鼠和高原鼢鼠)中经历了平行的氨基酸序列进化。另外,5个基因(Eief2b4,Agt, Ca4, Nbn and Polk)在鼠兔分枝中显示了显著的正选择信号。这些适应性进化的基因,4个基因(Alkbh3,Men1,Polk, and Nbn)参与DNA的修复,3个基因(Ca4,Agt,and Mylk2)作用于血液和血管的发育和形态建成,基因Eif2b4则与能量的产出有关。这些结果表明多个通路在哺乳动物的高原适应过程中发挥作用,因此高原适应的分子机制十分复杂,至少涉及了正选择和平行进化两种机制。 考虑到候选基因分析的局限性和转录组分析的高效和快捷,在第五章中,我们获取6个高原土著小型哺乳动物转录组数据,在全基因组范围内对编码基因的序列变化和表达模式进行分析。研究发现这些动物的多个生命过程(脂肪代谢、酒精代谢、低氧适应、抗辐射、免疫适应、细胞凋亡和再生、生殖等)的相关基因发生了适应性序列变化或者高表达,以适应高原的低氧、寒冷、高辐射等极端环境,其中低氧诱导因子2a(EPAS1)这个基因,首次在高原土著哺乳动物中被揭示发生了多位点的平行进化和多物种的高表达。值得一提的是,通过高原鼠兔的驯养实验,我们发现与脂肪代谢、抗紫外线辐射和酒精代谢相关的基因发生低表达,而与免疫适应和抗电离辐射相关的基因发生了高表达。表达模式的改变,为高原鼠兔快速适应低海拔环境提供了保障。这些适应高原环境的重要基因的识别,为我们研究高原疾病的防御和治疗提供了一些新的视角。在未来的研究中,将这些生理适应机制和人类疾病相结合(比如,肥胖和脂肪代谢,酒精中毒和酒精代谢,低氧症和低氧反应,癌变和抗辐射应答等),势必会推动人类医学的进步和发展。 综上所述,本系列研究采用了研究较少的非模式生物,从分子水平开展适应性进化机制的研究探索:从单纯的候选基因编码区的系统发育和选择压力分析,到线粒体基因组研究,再到基因组范围内的序列变化和表达模式的探讨。无论是高原土著动物共有的适应性特征(如:趋同平行进化等),还是特异性的适应性进化机制(如:正选择、差异性表达等),都有效地揭示了高原复杂适应现象的分子遗传机制。