论文部分内容阅读
便携式电子设备随着电子与通信技术的飞速发展得以普及,电源管理技术因此得到广泛关注。通过对电源管理市场及其发展趋势的研究发现,低压差线性稳压器(Low Dropout Regulator,LDO)作为电源管理市场的重要一员,因为简单的电路结构,较小的芯片面积、高电源抑制比(Power Supply Rejection Ratio,PSRR)、优良的稳定性、低噪声、低功耗以及可高度集成于电源管理单元(Power Management Unit,PMU)等特点而得以广泛应用。当今电子产品微型化的诉求促使LDO芯片的研究方向从大负载电流逐渐向高度集成、低功耗过渡,高性能LDO的设计成为集成电路领域的研究热点。本文研究的主要内容为:(1)针对超低功耗LDO设计中的关键问题展开研究,包括系统稳定性的提升和瞬态响应的改善,对采用的米勒补偿方案做出改进,以提升系统稳定性;同时采用自适应偏置电流技术改善负载瞬态响应性能,通过减小偏置电流实现待机状态下的低功耗。解决了低功耗和快速瞬态响应之间的矛盾。(2)针对本论文的低功耗设计,首先采用自适应偏置电流技术为运算放大器提供低偏置电流,减小电路待机状态下的静态电流;其次对主要功能模块进行设计优化,提出一种用于超低功耗电路设计中的耗尽、增强型基准电压源;最后在过温保护电路中增加电流监测模块降低待机状态下过温保护电路的功耗。实现本文的低功耗设计。(3)针对本论文的高精度设计,首先采用熔丝修调网络对基准电压进行修调得到高精度的基准输出电压;其次通过高增益运算放大器的设计得到高精度的LDO输出电压。实现本文的高精度设计。芯片测试结果表明,本文设计的LDO在2.2V~5.5V的输入电压下,输出电压为1.2V~3.6V,在-40℃~125℃工作温度范围内温漂系数为25.7ppm/℃,精度可达到±1%,最大输出电流150m A下漏失电压为190m V,线性调整率为0.022%/V,负载调整率为3m V,静态电流低至485n A,电源抑制比100Hz下为81.40d B,1KHz下为57.76d B,噪声为96.7μVrms。本设计在保证LDO稳定性的同时,与国内外同类型设计相比,功耗实现了从μA乃至m A到n A的过渡,降低了至少三个数量级,±1%是该领域当下最高精度水平,且LDO整体性能优良。测试结果验证了以上设计。