AER视觉传感器系统后端事件特征提取方法设计

来源 :天津大学 | 被引量 : 0次 | 上传用户:linnber
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
传统的视觉传感器以“帧扫描”为图像采集方式。随着视觉系统实际应用对于速度等性能要求的提升,传统视觉传感器遇到了数据率过大、帧频受限、动态范围低的发展瓶颈。因此,基于仿生视觉感知模型的地址-事件表达(Address Event Representation,AER)视觉传感器以其速度高、延迟小、冗余低的优势成为当前机器视觉系统领域的研究热点,该类传感器仅对发生变化的像素触发响应、异步输出稀疏表示的事件信息,从根本上消除了冗余信息的产生,特别适合定向高速物体拍摄及目标识别等机器视觉系统。本文研究了三种基于AER视觉传感器的特征提取算法,这些算法可以实时的从低冗余事件信息中提取出目标的形状特征和纹理特征,为进一步的机器识别系统研究提供数据准备。  本文首先简要介绍了面阵AER视觉传感器和线阵Timed-AER视觉传感器的概念、工作原理以及基本结构,并指出该类视觉传感器所存在的事件信息不易理解、无法继承传统图像处理方法等系统缺陷。之后本文针对目标形状特征提取的需要,设计了基于AER事件对匹配的高速目标二值化方法,通过对ON/OFF事件信息进行去噪、细化、轮廓闭合等预处理获得目标轮廓的主体外形,再通过事件对匹配方法确定目标区域,完成二值化操作,实现目标与背景的分离。并设计基于等价标号思想的高速二值连通域标记方法,只对有限的事件点进行标记,避免了对全帧图像的冗余遍历,提高了标记算法的效率,实现同一视场中不同目标的标记分割。最后本文设计提出了AER卷积处理算法,通过16种Gabor模板对事件信息进行卷积,实现了事件信息不同方向、不同尺度下纹理特征的提取。  通过对本文设计算法的实验分析和与传统算法的对比,仿真结果表明,本文设计的基于AER事件的目标二值化算法能够应对非均匀光照、低对比度等非理想环境条件,同时具有较高的算法效率,对于一幅512×512的图像,平均运行时间为2~4s;基于事件的二值连通域标记算法速度可以达到传统等价标号算法的1.5~8倍;而本文设计的AER卷积处理算法也能有效的提取原始事件信息在不同方向和不同尺度下的纹理特征。综上所述,本文提出的三种算法能够高效的实现事件信息的特征提取,适用于高速AER视觉系统应用领域。
其他文献
随着信息技术的飞速发展,各种电子产品的尺寸在不断地减小,工作频率也不断地提高。这使得产品中的电子元器件不断地小型化、片式化。作为三大无源元件之一的电感器,由于受到自身螺旋绕线的限制,其物理尺寸已缩小到物理极限,其小型化、片式化率远远落后于电阻器和电容器。怎样进一步减片式电感器的尺寸,或者在较小的面积上制备出更大电感量的电感器,成为电子产品小型化、轻型化的瓶颈,也引起了国内外众多电感器厂商的高度重视
射频识别(RFID)技术是利用无线信道实现双向通信的一种识别技术.近年来,射频识别系统的应用领域日益扩大.相对于低频段的射频识别系统,工作在860~960MHz的超高频段(UHF)射频识
可重构处理器兼具了ASIC方式的高效性和GPP方式的灵活性,可以很好地应用于计算量大但是并行化程度高的视频处理领域,充分发挥其并行计算高效性和可配置工作灵活性的优势。因
QCM湿度传感器是将湿度敏感材料涂覆于晶片表面,利用QCM对微质量的敏感特性设计而成的湿度检测装置,是目前传感器研究领域的一个热点。该传感器具有响应快、灵敏度高等特点,