论文部分内容阅读
混凝土箱梁抗扭刚度大,有良好的空间整体受力性能,且能满足连续梁结构和各施工方法的需求,在现代桥梁建设中广泛使用。在役的混凝土箱梁,因环境因素造成混凝土劣化,致使结构性能退化、使用寿命缩短的现象也常有发生。目前国内外对钢筋混凝土梁受环境劣化及劣化后的力学性能研究,主要是以实心截面混凝土梁为主,对具有空间结构的混凝土箱梁受环境劣化及劣化后的力学性能研究较少。为此,本论文进行了混凝土箱梁在不同等级荷载作用下的碳化及氯离子侵蚀研究,揭示了不同应力状态对混凝土碳化深度及氯离子扩散系数的影响规律。并以钢筋锈蚀量为依据,推导了混凝土箱梁保护层因普通钢筋锈蚀膨胀而开裂的最早时间及锈蚀钢筋预应力混凝土箱梁承载力的计算方法。本论文主要的研究结果如下:(1)利用混凝土箱梁快速碳化试验值和在役混凝土箱梁桥实测碳化值,分析了现有的几种混凝土碳化深度计算模型的差异,与实测值拟合结果表明,牛荻涛碳化模型更加精确,与实测值更为接近。在牛荻涛碳化模型中引入掺合料取代系数kF,并借助快速碳化试验,对其精确性进行了验证。通过对不同弯曲荷载作用下箱梁快速碳化试验值与各应力影响系数模型计算值的对比分析,得出了混凝土的碳化深度随拉应力的增大而增大,随压应力的增大先减小后增大;在弯曲荷载作用下,混凝土箱梁碳化深度应力影响系数的取值,建议参照刘杰模型。(2)通过开展混凝土箱梁氯离子浸泡侵蚀试验,得出试验箱梁在未施加外荷载时,氯离子的二维扩散系数是一维扩散系数的1.134倍,在底板拉应力分别为0.4ftk和0.8ftk的弯曲荷载作用下,氯离子的二维扩散系数是一维扩散系数的1.492和1.503倍。试验箱梁在弯曲荷载作用下,顶板混凝土氯离子扩散系数有所降低,底板混凝土氯离子扩散系数有所升高,压应力可以减缓氯离子在混凝土中的扩散速度,在荷载水平较小时,减缓效果显著,在荷载水平较大时,减缓效果有所削弱;拉应力可以加快氯离子在混凝土中的扩散速度,且随着荷载水平的增大,加速效果也越明显。同时在箱梁剪力滞效应作用下,顶板不同结构位置处的氯离子扩散系数也各不相同。(3)在假定钢筋均匀锈蚀的前提下,通过对由普通钢筋锈蚀引起的混凝土保护层锈胀开裂过程分析,考虑了在混凝土保护层锈胀开裂过程中锈蚀产物进入初始孔隙和锈胀微裂缝的实际情况,通过弹性理论对锈胀开裂前和开裂时的锈胀力进行计算,推导了混凝土保护层锈胀开裂时的钢筋锈蚀深度计算公式并进行验证,符合良好,精确度较高。利用Faraday定律建立了混凝土保护层最早锈胀开裂时间的计算模型,并结合加速锈蚀和自然锈蚀的特点进行了优化。将加速锈蚀和自然锈蚀的试验结果和计算模型理论值对比分析,计算值与试验值符合良好,误差均在±10%以内。(4)基于锈蚀钢筋混凝土实体梁承载力计算模型,在考虑锈蚀钢筋有效截面面积、强度以及混凝土有效面积削弱的基础上,结合现行桥梁规范,分别建立了预应力混凝土箱梁劣化后承载力计算方法和裂缝计算公式,并对劣化箱梁承载力计算方法进行工程实例验证。得出劣化箱梁正截面抗弯承载力计算公式精确度较高,斜截面抗剪承载力计算公式偏于保守,略有差异。结合现行桥梁规范,建立了各类预应力混凝土箱梁劣化后的的裂缝计算公式。