论文部分内容阅读
近年来,随着人们生活水平的不断提高和工业产业的迅速发展,生活污水和工业废水的排放量日益增加,现有污水处理设施远远不能满足规定的污水处理排放的要求,其结果必然造成环境污染日益加剧,水资源短缺。所以,开发应用新的处理效率高、处理费用低的污水处理设施具有非常重要的意义。污水生物处理技术迄今已有近100年的历史,由于其具有有机物去除率高、运行成本较低等优点,一直是城市污水和可生物降解的工业污水处理中最经济有效的方法。污水生物处理可分为附着生长工艺和悬浮生长工艺两大类,前者以生物膜法为代表,微生物以膜状固着在某种载体上,后者以活性污泥法为代表,微生物在反应器内以活性污泥的形式呈悬浮状态。但传统活性污泥法存在占地面积大、基建和运行费用高、管理较复杂、不耐冲击负荷、易发生污泥膨胀,对N、P等营养物质去除效果有限等缺点。生物膜法作为与活性污泥法平行发展起来的生物处理技术,在许多情况下不仅能代替活性污泥法用于污水的二级生物处理,而且还具有一些独特的优点,如参与净化的微生物多种多样且食物链长、运行稳定、维护运行管理方便、更为经济节能、耐冲击负荷、剩余污泥量少且无污泥膨胀问题、具有一定的硝化与反硝化功能等。但生物膜法也存在不足,其中效率较高的生物流化床法由于存在着挂膜、流化启动、停电停水后恢复困难以及生物载体密度大时流化所需动力大,生物载体密度小时则浮于表面等缺点,所以其推广应用受到限制。循环活性污泥-生物膜CAS-BT污水处理技术是一种复合式活性污泥-生物膜污水处理新技术。在充分借鉴、吸收国内外生物膜法和活性污泥法<WP=61>各种处理工艺优点的基础上,创新性地将自行研制的生物载体引入到循环活性污泥法(CAST)系统中,构成了该工艺。该技术的核心处理单元由生物选择器和复合生物反应区构成,该项工艺技术充分继承了循环式活性污泥法与流化床生物膜法的优点,同时又克服了各自的缺点,在某种程度上还可能存在不同生物种群的协同净化效应。因此,它是一种在技术上和经济上极具竞争力的、适合我国国情的污水处理新工艺。本试验从增加生物量和提高传质速率入手,采用自行研制的轻质多孔性生物载体,制作CAS-BT试验模型,对含啤酒污水进行了一系列去除有机物效能的试验研究,获得了大量的相关资料。本试验循环活性污泥生物膜反应器CAS-BT试验模型采用有机玻璃材料制做,反应器总容积60升,分为生物选择区和复合反应区两部分,其中生物选择区共分为四格,每格容积为2.5升,共10升,占总容积的17%,复合反应区容积为50升,占总容积的83%,复合反应区底部设置环形曝气管路,空气扩散装置采用多孔石曝气头。曝气系统由空压机、流量计、多孔石曝气头及曝气管路构成。出水采用虹吸式滗水器排水,复合反应区底部设置排泥管,采用重力人工排泥。试验用填料为自制加工,选用聚丙烯多孔外壳,内装泡沫塑料,反应器内填料体积填充比为20%。试验进水经原水箱、流量计、阀门、出水管,自选择区液面以下进入反应器,复合反应区混合液,由底部穿孔回流管经回流泵(蠕动恒流泵)回流进入生物选择区液面以下。试验用污水由自来水与啤酒配制而成,在试验的不同阶段配制的污水COD浓度不同,正式运行试验期间进水COD浓度变化幅度为804.4~5781.4mg/L;进水BOD5浓度变化幅度为263.9~3930.45mg/L。每周期进水量为20L,每日工作周期低浓度时采用每日三周期运行,高浓度时采用每日<WP=62>两周期运行。进水时间采用1h,个别周期不同,采用进水阀门控制。当采用每日三周期运行时,曝气时间为6h;每日两周期运行时,曝气时间为10h,采用计时控制。沉淀时间为1h,采用计时控制。滗水排泥时间为0.5h,采用计时控制。待机时间为0.5h,采用计时控制。排泥量每日三周期运行时,每周期排泥1升;每日两周期运行时每周期排泥3升。曝气量采用0.2m3/h~0.5m3/h,转子流量计计量、调节阀调节。反应器温度选用25℃±1℃,水浴箱电加热管加热,温控仪控温。正式运行试验的初期采用COD低浓度进水,每日三周期运行,进水COD浓度为804.4~2012.7mg/L,正式运行试验的后期提高COD进水浓度,并且采用二周期运行,进水COD浓度为1814.5~5781.4mg/L。在试验过程中考察了不同浓度梯度单个运行周期的有机物历时变化情况,每日三周期运行,选取四个具有代表性的COD历时变化进行分析,每日采用二周期运行选取八个具有代表性的COD历时变化进行分析。结果表明该工艺具有较强的有机物去除能力,容积负荷为0.47~4.4kgCODcr/m3-d时,CODcr的去除率均在90%以上,BOD5去除率均在96%以上。由于生物膜的存在,使系统具有较强的有机物吸附能力,其有机物初期吸附去除量与进水浓度均呈线性关系,且显著相关。在试验过程中考察了不同进水有机物浓度下复合反应区的混合液中悬浮固体(MLSS)历时变化情况,选择四个具有代表性的历时变化。结果表明,反应器内混合液悬浮固体浓度总体变化不大,说明该工艺具有自我调节能力。通过动力学分析可以得出,在限制排泥的情况下,混合液中有机物与微生物的比值(F/M)具有较强的自调节能力。有机物浓度S和有机物浓度与混?