真空室涡流分析方法及涡流对等离子体平衡反演的影响

来源 :清华大学 | 被引量 : 0次 | 上传用户:xsb
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
随时间变化的磁场(电流)将会在导体结构中产生感应电流,我们称之为涡流。在托卡马克复杂的电磁环境中,真空室中的涡流将对等离子体放电产生多种影响。它会影响装置结构应力分布、影响等离子体击穿和加热效率、降低平衡反演和实时控制的精度、与不稳定性相互作用导致破裂等问题。尤其在类似SUNIST这样的短脉冲放电且拥有复杂真空室结构的装置中,真空室涡流对装置运行、平衡反演和控制、波加热、密度测量以及破裂阶段的物理分析都有重要的影响。本论文主要关注涡流对磁诊断信号及平衡反演的影响。基于对SUNIST球形托卡马克磁诊断信号的分析验证,论文提出一种更高效快速的磁信号中涡流效应分析方法—响应函数方法,可用于分析涡流在磁信号中的响应、求解涡流分布以及方便地将涡流影响整合在平衡反演程序中。首先,本文对简谐波形下的外场线圈电流在SUNIST真空室中激励的涡流分布进行了三维有限元模拟,分析了真空室环向上的竖直隔断对涡流分布的影响,发现并解释SUNIST磁诊断信号中真空室顶部和底部磁通环信号领先于激励信号的“反常”涡流效应。随后,本文推导磁诊断对激励源电流的响应函数,分析响应函数中所有参数的物理意义,并设计实验进行了验证。这种响应函数方法可清晰地分解磁诊断信号中激励电流和涡流的贡献分量,具有很高的精度和计算速度。其次,以SUNIST磁诊断信号为例,使用响应函数方法将等离子体放电时的磁信号中的垂直场、欧姆场和它们相应的涡流贡献进行精确分解。并且使用空间不同位置的磁通环信号中垂直场和欧姆场涡流贡献,拟合真空室上环向涡流的空间分布及时间演化,其结果与有限元方法模拟的环向涡流分布规律一致。利用这种方法,SUNIST磁诊断信号中的“反常涡流效应”同样可以得到清晰的解释。最后,论文将响应函数方法整合进SU-EFIT平衡反演程序。首先将可准确预测的外场线圈电流及其感应的环向涡流作为背景场,扣除他们在磁信号中的贡献,进而交替迭代等离子体电流分布和等离子体涡流分布,最终获得满足磁流体力学平衡的等离子体磁通分布、环向电流密度及自洽的等离子体涡流分布。与高速相机拍摄的等离子体图像对比发现,考虑涡流影响后的平衡反演结果可信度得到巨大提升。
其他文献
直接分析单个分子的微区结构,构象变化,动态行为,相互作用的单分子分析技术,能为理解分子的结构与功能机制提供更加丰富的信息。纳米通道作为一种有潜力的第三代基因测序技术,为分子生物学和纳米科学提供了实时、快速的单分子检测平台。本论文以α-溶血素蛋白(α-Hemolysin)的纳米级通道结构为基础,利用其对单分子精细结构高灵敏的分辨能力,提出了高特异性的分子识别策略,构建了新型单分子分析方法和传感器,应
数控机床是现代制造业的核心装备之一,提高机床的加工质量和加工效率有重要研究意义和应用意义。本文在相关项目的支持下,对一种具有三个平动联动轴和三个旋转联动轴的六轴联动数控机床在运动学模型层面展开了优化其刀具运动轨迹和加工效率的相关研究。首先,根据六轴联动数控机床的实际机械结构和联动轴分布,建立了该机床的运动学模型。研究了该种机床的冗余联动特点,和不同联动模式和联动轴配置下对应的运动学模型。在机床运动
超短超强中红外光在超快化学、强场物理及阿秒科学等领域有不可替代的应用价值,近几年来该领域的研究逐渐受到越来越多的关注。然而由于传统激光晶体及非线性晶体的限制,长期以来超短超强中红外光源(特别是长波红外光源)始终是超快激光技术领域的一大挑战。本文针对这一困境,另辟蹊径从激光等离子体角度入手,在国际上首次提出并实验验证了一种基于等离子体“光子减速”机制产生相对论光强、波长可调谐的单周期长波红外脉冲新方
随着精准和个体化医疗概念的提出,越来越多的医院计划使用质子和重离子放射治疗。相比于光子,质子和重离子不仅有更好的物理剂量分布,而且有更强的生物效应。为了更准确地评估质子和重离子等高LET射线的生物效应,本文主要研究了两个问题:一是如何准确模拟不同LET射线所致的DNA损伤和分布以及不同类型的染色体畸变;二是如何建立基于DNA辐射损伤的细胞存活机理性模型。具体工作如下:(1)基于仅适用于光电子的纳剂
纤毛(也称为鞭毛)是基于微管组装的,突出于细胞表面的毛发状亚细胞结构。纤毛广泛存在于真核生物中,在运动、知觉感知、信号传导、胚胎发育及细胞周期调控中发挥着重要的作用。纤毛结构或功能的缺陷会导致多种疾病的发生,统称为“纤毛相关性疾病”,例如肾囊肿、多指症、内脏反转和呼吸道疾病等。大量研究显示多种纤毛疾病与鞭毛内运输机制(IFT)相关基因的突变有关,因此对IFT的研究可为诊断和治疗纤毛相关疾病提供理论
镁合金性能优异,应用前景广阔,然而有限的室温塑性变形能力限制了其生产应用。在镁合金的变形过程中,常会出现孪晶与孪晶、晶界及位错的相互作用,进而影响孪晶的形核及生长,对其塑性变形产生重要影响。本文利用分子动力学研究了镁中孪晶与孪晶、晶界及位错的相互作用,借助对应力分布、错配度及原子位移等的分析,对其内在机理进行深入探讨。研究表明,在施加切应变的情况下,单个{1012}孪晶的平均横向生长速度大于增厚速
挤压铸造是一种先进的近净成形工艺,它集成了铸、压成形的优势,应用于轻合金材料,可充分发挥材料的潜力,实现高性能、轻量化的零件成形制造。铸件-模具界面换热及压力传递是挤压铸造过程中的核心物理问题,因此深入研究挤压铸造铸件-模具界面换热行为和压力传递规律具有重要的应用价值和学术意义。本文通过设计挤压铸造实验用的模具和铸件、设计测温单元、精确安装压力传感器以及开展挤压铸造实验,建立了一套准确的铸型温度和
排放法规不断加严对直喷汽油机(GDI)的燃油雾化质量提出了更高的要求。闪沸喷射作为提升雾化质量的有效手段,受到了研究人员的广泛关注。然而对于多孔式喷油器,在闪沸条件下多个油束会相互聚拢发生喷雾坍塌。喷雾坍塌会显著改变缸内燃油分布,可能导致喷雾贯穿距升高并引起喷雾撞壁,为发动机的燃烧和排放性能带来不良影响。本课题围绕闪沸条件下喷雾坍塌的影响因素、机理和抑制手段三个方面开展了研究。在喷雾坍塌的影响因素
镁合金是重要的轻量化材料,挤压铸造是制造高性能结构件的先进成形方法,以具有工程应用价值的多元镁合金挤压铸造为应用背景,开展压力下凝固微观组织演化的实验研究及相场建模,对于深入理解压力下凝固机制,预测压力下凝固微观组织,进而指导挤压铸造技术开发具有重要的理论意义和应用价值。本文建立了透明合金压力下凝固过程原位观察的实验装置,采用透明合金,通过原位观察实验,系统研究了不同恒压力、周期性“升-降”压力、
通过有机朗肯循环回收利用内燃机余热是实现汽车节能减排的重要途径。涡轮低比速设计是提高车用有机朗肯循环系统轴系可靠性、降低系统成本的有效手段。低比速涡轮效率低是车用有机朗肯循环系统研发所面临的主要难点和瓶颈,深入研究低比速涡轮内部流动机理,探讨提高低比速涡轮效率的流动控制方法,具有重要的理论意义和工程价值。论文的研究工作主要包括以下几个方面:论文仿真研究了车用有机朗肯循环低比速涡轮在高、低压比工况的