石墨膜表面改性及石墨膜/铝层状复合材料导热性能研究

来源 :哈尔滨工业大学 | 被引量 : 0次 | 上传用户:zouyongchina
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
功率密度的大幅增加,使得集成电路单位面积的热量持续升高,热管理系统作为航天电子大功率器件的重要组成部分,成为制约高速飞行器服役能力的关键技术。石墨膜(GF)是一种新型高导热二维材料,具有较低的密度、良好的耐腐蚀性、较高的热导率和较低的热膨胀系数等优点,其面内热导率可以达到1100-1600W/(m·K),被认为是未来最具潜力的热管理用复合材料增强体。本论文主要研究碳纳米管(CNTs)表面改性石墨膜和碳化硅纳米线(SiCnws)表面改性石墨膜两种多尺度复合增强体;并以此为基础,采用压力浸渗技术,以轻质、高导热金属铝为基体,分别以GF、CNTs-GF和SiCnws-GF为增强体,制备GF/Al、CNTs-GF/Al和SiCnws-GF/Al三种高导热铝基层状复合材料,以期获得兼具高导热和优异力学性能的新型二维层状复合材料。系统研究两种改性石墨膜制备和微观结构,以及两种改性石墨膜/铝层状复合材料的显微组织、力学行为及导热性能,基于复合材料XY方向热导率模型揭示复合材料的传热行为。探讨复合材料的材料组成、界面结合等对复合材料力学性能及导热性能的影响及规律。采用催化剂辅助等离子增强化学气相沉积(PECVD)技术在石墨膜表面原位生长碳纳米管,以甲烷为碳源,氢气为还原剂,金属镍为催化剂,成功制备得到CNTs-GF多尺度复合增强体。研究不同工艺条件对CNTs形貌和结构的影响。研究发现,PECVD法在石墨膜表面生长CNTs的最佳催化剂浓度为0.05mol/L的Ni(NO3)2·6H2O丙酮溶液。得到的CNTs直径约80nm,长度约3-4μm,均匀、致密地生长在石墨膜表面。CNTs在石墨膜表面的生长,使CNTs-GF在XY方向的热扩散系数和热导率均有所提高,热扩散系数由950mm2/s增加到1030mm2/s,热导率由1420W/(m·K)增加到1450W/(m·K)。以甲基三氯硅烷(CH3SiCl3)为硅源和碳源,金属镍为催化剂,在石墨膜表面采用催化剂辅助化学气相渗透(CVI)工艺生长碳化硅纳米线,成功制备SiCnws-GF多尺度复合增强体。石墨膜表面生长的SiCnws直径约150nm,长度约几十微米,此时SiCnws均匀、致密地覆盖在石墨膜表面。与原始石墨膜相比,SiCnws-GF复合增强体XY方向的热扩散系数和热导率有所降低。研究结果表明,相同增强体质量分数条件下,CNTs-GF/Al复合材料XY方向的热导率为1026W/(m·K),与GF/Al复合材料相比提高了33%,Z方向的热导率为52W/(m·K),较GF/Al复合材料提高了225%;CNTs-GF/Al复合材料层间剪切强度为70.3MPa,与GF/Al复合材料相比提高了26%。相近增强体质量分数条件下,与GF/Al复合材料相比,SiCnws-GF/Al复合材料XY方向的热导率提高7%,Z方向的热导率提高75%;SiCnws-GF/Al复合材料层间剪切强度提高141%。结果表明,石墨膜表面CNTs和SiCnws的原位引入,有效解决了石墨膜与金属铝界面相容性差的问题。在复合材料界面处一维纳米线在石墨膜与铝基体之间起到界面“钉扎”作用,在提高界面结合强度的同时又传递了载荷。因此石墨膜表面改性可以有效改善石墨膜/铝复合材料的界面结合性能,从而提升复合材料的导热性能和层间剪切强度。
其他文献
微波通信技术的迅猛发展对电磁材料的多功能化提出了更高的要求,电磁材料需要满足性能可调、节能环保和可靠性高等必要条件,具有多种性质的多铁性材料是其中的典型代表。多铁性材料中铁电性与铁磁性共存机制及两者的协同损耗效应是探索强吸收、宽频带微波材料的重要基础,对探索新型微波电磁材料和丰富电磁波与多铁性材料相互作用理论体系有着重要意义。因此,本论文以铁酸铋基多铁性材料为研究对象,研究其结构演变、磁性机制和微
多目标跟踪是计算机视觉领域中一个重要的研究课题,是计算机视频分析系统中不可或缺的部分,其在公共安全、海洋监视、港口监视、室内监控、群体行为分析、无人汽车驾驶、无人机自动导航等任务中起到至关重要的作用。作为计算机视觉领域中重要的一部分,研究更加准确的多目标跟踪方法具有重大意义。同时,随着近几年无人机技术日渐成熟,无人机具有小型轻便、机动灵活等优点,可以应用于安全、交通、农业等多个行业。而无人机视频具
金属催化剂的界面结构能显著影响电还原CO2反应的动力学。制备高效的金属催化剂并研究其构效关系对于实际应用至关重要。但是,目前催化CO2还原的金属催化剂,存在构筑策略局限、C2+产物选择性低,以及材料构效规律不清等问题。由此,论文围绕金属材料,构筑了仿酶结构的单位点金属催化剂、二元分相Ag/Cu合金以及不饱和配位氧化物衍生Cu,通过XRD、TEM、SEM、FT-IR、电化学测试、原位XAFS、原位R
电磁吸收和通信性能在军事隐身领域占有极其重要的地位。人工电磁吸收结构凭借其对电磁波优秀的吸收响应,被广泛地应用在空间反射回波调控应用中。然而传统吸收结构通常使得其天线模块丧失了对外通信性能,因此开展人工电磁吸收结构的传输特性研究具有较高的应用价值与现实意义。传输型人工电磁吸收结构是一种在实现电磁能量吸收响应的同时提供通信性能的平面周期结构。然而,其工作频带内吸收与传输响应间的性能制约为该类设计带来
网络控制系统是系统组件经由共享通讯网络连接而成的闭环反馈控制系统。随着互联网技术发展的日新月异,网络技术与现代工业生产过程之间的交叉融合日益加深,科学理论的蓬勃发展使网络控制系统实际上变得日益复杂,通常具有高度非线性特性。而复杂随机系统作为控制系统领域的重要分支,能够较为准确地描述网络通讯系统、航天器系统、运动控制系统中存在的系统结构突变,已成为了经久不衰的研究热点受到学者们的广泛关注。而实际系统
陶瓷材料优良的力学、热学、电学、光学等性能,使其在高新技术行业和先进制造领域占据着不可替代的作用。然而,陶瓷材料的硬度高、熔点高及脆性大等固有特点,又使其在切割加工过程中易出现表层和亚表层损伤及切缝处的热损伤等缺陷问题。热裂法切割以其无材料去除、断面质量好、损伤小等加工特点,逐渐被应用于切割玻璃、陶瓷等硬脆性材料。然而,目前国内外学者在采用面热源进行陶瓷材料的热裂法切割时,尚存在裂纹扩展机制不明晰
氢能源拥有燃烧热值高、无污染及可再生等优点,是新能源开发的重要方向。电催化分解水是较为理想的制备氢气的方法之一。然而传统电解水制氢的方法需要较高的过电位,所以要引入催化剂来降低过电位。目前,铂族贵金属是最为高效的分解水制氢催化剂,但铂族贵金属高昂的价格导致生产成本过高,不易实现工业化大规模应用。所以,寻找高效、廉价的催化剂就成为了目前研究的当务之急。近些年,利用过渡金属及其化合物来代替贵金属作为析
旋转机械是一类应用广泛的机械装置,在工业生产中承担着重要的作用。面对逐渐复杂化和智能化的旋转机械设备,发展能够实时感知设备健康状态及退化趋势的健康状态管理系统是保障工业生产过程可靠性、安全性和经济性的重要举措。数据驱动的智能故障诊断是健康状态管理系统中的重要技术,其旨在利用机器学习技术从大量设备监测数据中学习故障的表现形式以及故障模式的识别规则。传统数据驱动的故障诊断方法获得良好泛化性能的前提是要
世界经济的快速发展改善了人们生活质量,但伴随而来的诸如能源的大量消耗、资源的可预见性短缺、三废的无秩序排放等现象也带来了严重的环境问题。制造业作为能耗、碳排放大户是引起环境问题的主要源头之一,数控切削加工过程又是制造业的必备一环,会消耗大量的资源、能源,产生固、液、气三态废弃物,其环境影响问题已愈来愈引起学术界和工业界关注。为保证绿色低碳加工,优化加工过程碳排放、建立绿色性评价体系已成为当前研究热
机械设备往往会根据生产任务的不同不断调整工作状态,为了保证设备运行的安全性和维修的有效性,实现在多工况下设备的寿命预测具有重要的意义。针对多工况下设备寿命预测问题,尽管基于实例推理框架的相似轨迹方法给出了很好的解决方案,但在单一工况下退化指标间相似性度量、多工况下退化模型难获取、服役设备预测阶段与服役阶段任务剖面不一致、相似轨迹方法寿命点预测结果不可靠等方面还存在急需解决的困难问题。本文针对相似轨