论文部分内容阅读
作为一种有前景的新型磁制冷材料,La(Fe,Si)13基磁制冷合金以其优异的磁热性能、居里温度连续可调、原材料环保经济等特点引起了广泛重视。La(Fe,Si)13基磁制冷合金作为室温下的磁制冷工质,在实际应用中必须与流动的传热介质(如去离子水)接触以进行热交换,因此提高材料在流水中的耐蚀性是十分重要的。本文详细研究了 La(Fe,Si)13基合金的各相形成特点以及相关联的腐蚀行为和磁热效应。首先论文中研究了 B和Si元素的共同作用对LaFe13-xSixBy合金中1:13相形成以及腐蚀行为的影响。研究表明,当Si含量较高时,铸态合金中加入过量B元素有助于1:13相直接在铸锭凝固过程中形成。然而已有的1:13相阻碍了包析反应中的原子扩散,因此B掺杂不利于退火后1:13相的进一步形成。B元素更倾向于形成新的杂相Fe2B,而非进入1:13相占据其间隙原子位置。随着B掺杂量的增加,合金的磁热效应逐渐减小。此外研究了退火态LaFe11.6Si1.4By合金的腐蚀行为,添加B元素使合金的耐蚀性得到明显提高。通过制备并研究单相α-Fe、Fe2B铸锭和含有单一 1:13相合金的电化学性质发现,当杂相从α-Fe相转变为Fe2B相后,杂相与基体1:13相之间的电化学差异发生了变化。Fe2B与1:13相之间的电位差更小,因此两相间的微电偶腐蚀被抑制,有效提高了 LaFe11.6Si1.4B0.3合金的整体耐蚀性。基于以上结果,制备了一系列非化学计量比LaFe11.5Si1.5C0.15+X(X:非化学计量添加元素)磁制冷材料,得到由基体1:13相和单一特殊杂相(α-Fe相、Fe2Nb相、La-rich相、含有Ni元素的La-rich相等)组成的合金,进一步研究不同特殊杂相对合金腐蚀行为的影响。含杂相的La(Fe,Si)13基合金的腐蚀机理主要为微电偶腐蚀,其腐蚀电流密度由基体1:13相与杂相间的电化学差异所控制。失重实验表明,含有La-rich相的LaFe11.5Si1.5C0.15+(La5Si3)0.1在水中腐蚀最为严重,然而在La-rich相中掺杂Ni元素后,Ni改变了 La-rich相的电化学性质,使微电偶腐蚀得到抑制,从而提高合金耐蚀性。然而Ni元素进入1:13相会导致磁熵下降。综合考虑这两种性能,将La-rich相和Ni的含量同时降低,得到的LaFe11.5Si1.5C0.15+(La5Si3+Ni)0.05合金不但保持较大磁熵变,并具有很好的耐蚀性。因此掺杂少量仅进入杂质相的特定元素(如Ni、Nb)可在不改变基体1:13相的情况下提高La(Fe,Si)13基合金耐蚀性。另一方面,快速凝固是合成La(Fe,Si)13基磁制冷合金的最有效的方法。然而由于得到的薄带材料往往具有大比表面积和小于1 mm的厚度尺寸,在热处理过程中更容易受到外部干扰(如氧化等现象)。因此研究了退火中气氛压力和时间对LaFe11.5Si1.5C0.13薄带材料表面氧化及磁热性能的影响。在5×10-5Pa低压退火后,薄带样品表面出现了明显的氧化层,并且内部1:13相的成分变得极不均匀,表面氧化导致薄带的磁热效应明显减小。相反,当提高退火压力至1 atm氩气气氛,薄带表面没有发生氧化,并且内部结构均匀,1:13相的体积分数在95%以上,最大磁熵变在2T下达到15.97 J/(kg·K)。这表明较高的退火压力有助于避免La(Fe,Si)13基薄带的表面氧化,并提高磁热效应。最后,综合La(Fe,Si)13基薄带材料表面氧化和杂相对合金腐蚀行为影响这两方面研究,提出了一种改善材料耐蚀性的新方法:即通过控制退火过程中的真空度,使得添加了过量La5Si3元素的LaFe11.5Si1.5+(La5Si3)0.05薄带表面的La-rich相被氧化,但1:13相的形成不受影响。与一般的由1:13相、少量La-rich相和α-Fe相组成的La(Fe,Si)13基材料不同,氧化处理后的薄带表面主要由基体1:13相和La的氧化物组成。由于La的氧化物比La-rich相的电化学稳定性更强,改变了薄带表面的腐蚀性质,从而提高了整体耐蚀性。薄带材料的腐蚀行为研究在模拟实际磁制冷机工作环境的流动去离子水装置中进行。实验表明表面氧化明显提高了薄带的耐蚀性,在流水环境下浸泡24小时后平均腐蚀速率比未氧化薄带降低了 47%。由于添加过量La5Si3元素,表面氧化对1:13相的形成没有干扰,因此经过表面氧化处理后,薄带在2T下的最大磁熵变保持在17.99 J/(kg·K),达到未经氧化处理薄带磁熵变的90%。综上所述,将表面La-rich相进行氧化处理的LaFe11.5Si1.5+(La5Si3)0.05薄带具有很好的实用性能。