论文部分内容阅读
随着互联网的蓬勃发展,海量的信息得以迅速传播,繁杂的物品涌现到人们面前。为不知所措的人们从这些信息和物品中选择那些最适合他们的成了当前的迫切需求。于是,推荐系统应运而生。推荐系统根据用户行为习惯、信息内容类型以及物品属性特征来向用户推荐信息和物品。例如,新闻网站使用推荐系统根据用户的阅读习惯进行新闻推荐;电子商务网站使用推荐系统根据用户的消费偏好进行产品推荐;音乐、视频网站使用推荐系统根据用户的兴趣喜好进行音乐、视频推荐;社交网站使用推荐系统根据用户的社交关系进行好友推荐。可以看出,推荐系统已经越来越多地被应用到实际生活中,它们在提高用户的满意度的同时也带来了巨大的商业利益。然而,当前的推荐算法由于原始数据的不完整性、算法本身处理数据的特殊性以及用户行为变化的多样性,会产生诸如冷启动、可解释性差和复杂兴趣推荐困难等问题。当前已经有很多收集信息的方法被用来缓解冷启动问题,比如收集用户注册信息、收集用户反馈信息、导入用户社交信息等,但这些工作或者涉及隐私或者很难有恰当的方式,导致数据有时候并不是十分准确,也就不能很好地上解决冷启动的问题。另外也有其他的一些方法,比如基于标签的推荐方法被提出,用于改善可解释性,但是该方法由于人们使用标签的习惯不同以及标签提供的数据并不充足使得推荐效果有时候并不尽如人意。据笔者所知,当前还未有很好的方法用来解决复杂兴趣推荐问题。针对当前方法和模型的不足,本文提出一种基于滑标评分的推荐系统模型,旨在使用一种较为简洁的方式——滑标评分,来获取用户最准确的评价和需求,通过改进当前的一些推荐算法来处理滑标评分数据,从而生成对用户的推荐,最后以滑标评分的形式向用户展示推荐结果并做出合理的解释。另外,本文模型允许用户对推荐系统所推荐的物品以滑标评分的形式进行反馈,然后推荐系统可以通过在线反馈计算,再次进行更准确的推荐。扩展实验中,针对当前推荐系统的缺陷,我们使用本文模型和算法进行了对比试验,证明了本文技术的有效性和可行性。