论文部分内容阅读
随着激光技术在军事领域中应用的日益广泛和深入,使现代战争充斥着激光的威胁。抛开已大量装备部队的激光测距机、激光雷达、激光照射器等不谈,用于攻击光电传感器的各类战术激光武器已大量装备于各军事强国。激光对人眼、光学系统、光电系统的破坏日益受到重视,光电系统的激光破坏及其防护技术已成为光电对抗领域中重要组成部分,并成为该研究领域的焦点。本论文在总装试验技术项目、军队科研项目和解放军军械工程学院重点基金等的资助下,开展了强激光对光学材料、光学元器件、光电探测器件和光电系统的干扰、破坏以及强激光防护技术的研究工作。本文的主要内容和创新点以下:1.系统建立了激光辐照的热力耦合理论模型以激光与物质相互作用和热传导方程为理论基础,首次系统建立了激光辐照的热力耦合理论模型,并对一维非稳态方程、二维非稳态(有限平顶光斑、高斯光斑)方程和三维非稳态温度方程进行理论分析和研究,推导出不同情况下激光辐照材料的温升和热应力方程,并进一步对激光辐照材料的熔融时间和最大熔融深度,气化和烧蚀,冲击波的传播和层裂进行理论研究。2.对激光辐照光学材料的破坏技术进行了研究建立了连续激光辐照工作波段外光学材料的数学模型,首次以波长为10.6μm的CO2激光辐照K9玻璃为例,对基模高斯激光光束辐照材料的温升和热应力场的瞬态分布进行了计算模拟研究,通过曲线拟合确定材料最易损伤的位置,计算出材料的损伤阈值。结果表明:K9玻璃材料的损伤形态为解理破坏,破坏的原因是环向拉伸应力大于材料的抗拉强度,且材料的损伤阈值与辐照时间反向相关,即激光功率密度越高,造成破坏所需的时间越短。建立了连续激光辐照工作波段内光学材料的数学模型,首次对三维热传导方程进行精确求解解析解,得到了三维温度场和热应力场分布,并以波长为1.315μm的氧碘激光辐照熔融石英玻璃为例进行了理论研究。结果表明:当激光的辐照时间为8s时,受激光辐照的入射面与出射面温度均已超过熔融温度,激光造成材料的熔融而穿孔,而此时材料的径向、环向和激光传输方向上的最大热应力均未超过材料的抗拉强度或抗压强度,不足使其产生炸裂或解理。因此,氧碘激光对熔融石英的损伤主要是激光辐照导致材料熔融烧蚀甚至穿孔。研究了连续激光对半导体材料的损伤机理。首次建立了激光辐照圆板型半导体靶材的二维物理模型,求解了热传导和热应力方程,得到了激光辐照引起的温度场和应力场的瞬态分布,分析了辐照时间、光斑半径以及非线性参量对破坏阈值的影响。结果表明:InSb材料的损伤阈值与辐照时间和光斑半径反向相关,且在同一条件下熔融损伤阈值较热应力损伤阈值低,材料的破坏形态为熔融破坏。3.激光对光学器件的破坏技术研究首次对波长为1.06μm的脉冲激光辐照类金刚石(DLC)薄膜的热冲击效应进行了研究。建立理论模型,求解热传导和应力平衡方程,得出了薄膜的温度场和应力场分布。理论分析表明:热应力破坏在脉冲强激光对DLC膜的损伤机理中占主导地位。当辐照能量密度为E0=100mJ·cm-2时,在薄膜表面距光斑中心约40μm区域内的压应力明显超出其断裂强度,将造成膜层的剥离、脱落。理论分析与实验结果基本相符,表明建立热冲击效应模型的正确性。首次对激光破坏四象限探测器进行了理论分析和实验研究。理论分析表明激光对光电探测器的干扰和破坏主要有两方面的原因:一是激光造成半导体材料的“熔化和结晶”,形成漏电通道,等效为一个并联电阻;二是激光造成半导体材料破坏后光敏面面积减小。实验结果表明激光辐照四象限光电探测器中的一个或几个,可造成光电探测器对光斑质心测量的误差。首次建立了激光辐照HgCdTe光电导探测器的非稳态物理模型,得到了温度场分布的数值解,分析瞬态温度场分布随时间变化的关系,讨论了激光辐照对探测器性能参数的影响。理论分析表明:激光对HgCdTe光电导探测器的破坏,主要表现为热效应破坏,且改变材料的禁带宽度、光谱特性和电学特性等重要参数,从而导致探测质量下降,探测器失效,甚至器件的熔蚀。4.光限幅器的优化设计研究以Z扫描技术理论为基础,首先系统研究了介质厚度、介质位置、孔径位置、孔径大小、非线性吸收、非线性折射等因素对光限幅器的影响。5.可溶性碳纳米管光限幅效应研究系统研究了可溶性碳纳米管对波长为1.06μm和0.53μm激光的光限幅效应。实验结果表明:可溶性碳纳米管对波长为1.06μm和波长为0.53μm的激光具有优良的限幅效应。