2022年氢燃料电池汽车发展须多方努力

来源 :中国经济时报 | 被引量 : 0次 | 上传用户:harite
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
其他文献
随着社会的进步,经济的不断发展,20世纪70年代起光纤传感技术得以快速发展,而双马赫-曾德尔(M-Z)干涉光纤传感系统具有结构简单、灵敏度极高、信号处理容易、方便解调、成本低等优点,在周界安防和管道泄漏检测及桥梁大坝、大型设施建设项目等领域得到了广泛的研究和应用。双M-Z光纤传感定位系统利用外界入侵扰动引起干涉信号的相位发生变化,再通过干涉解调成光强度变化,由光电探测器转化为电信号,利用互相关算法
针对平方根容积卡尔曼滤波高斯混合概率假设密度 (Square Root Cubature Kalman Filter Gaussian Mixture Probability Hypothesis Density, SRCKF-GM-PHD)算法在高杂波条件下对非线性目标跟踪能力弱的问题,该文首先融入改进灰狼算法,实时调节过程噪声Q和量测噪声R。其次,结合改进的渐消因子思想,实时调整SRCKF-G
在人工智能界,常识知识获取一直是公认的核心难题。所谓常识,是指日常生活中人与人之间存在的共识。人们的观念不断改变,常识也在不断发展。常识知识在自然语言处理、计算机视觉等领域都有着广泛的应用,但常识具有隐含性、大规模性、无领域性等特性,并且常识的理解机制尚不明确,使得常识知识获取成为限制人工智能发展的瓶颈问题。目前,根据自动化程度可以将常识获取的方法分三类:手工获取能够得到隐式的常识,但耗费大量的人
在互联网以及信息技术飞速发展的今天,物联网(Internet of Things,IoT)的研究得到了广泛的关注和重视,我国已经将物联网列入了国家的五大新兴战略性产业之一.物联网按照特定的网络协议将物体接入互联网,进行数据的交互,使得物物相连.随着人们生活水平的提高,物联网正在被逐渐被应用到家庭之中,例如家庭中的安防系统,灯光控制系统,温度检测系统等,物联网技术在家庭中的应用使得人们生活变得更加安
道路是现代交通的主要组成部分,对于管理和更新地理信息系统数据库中的道路信息非常重要。遥感图像数据已经迅速成为自动提取道路网络的主要数据源,它可以提供高精度的地面信息以及更复杂的背景细节,还可以进行大规模的道路监控,给道路提取带来了很大的改进空间,然而目前视觉判读仍然是更新道路的主要方式,这种方式成本高、需要耗费大量的时间和物力,给自动提取道路任务带来了影响。高分辨率遥感图像中的道路具有较大的类内差
人脸表情蕴含着丰富的情感信息,在人际交往沟通中起非常关键的作用,如何让计算机正确的识别理解人脸表情信息是一项具有重要意义且极具挑战性的工作。随着深度学习的发展,利用深度学习技术实现人脸表情识别成为了表情识别领域新的研究热点。人脸表情特征大多集中在人脸的局部关键区域,如眼睛、眉毛、嘴巴及其周围区域,人们可以忽略人脸的整体信息,而直接借助人脸的局部关键区域信息,来正确的识别人脸图像中的表情类别。因此,
随着教育信息化的发展,可视化教学成为教育研究者关注的热点之一。如何运用信息技术将可视化教学与学科教学融合的方式来发展学生的科学素养是亟待解决的重要课题。由于晶体结构与性质内容具有抽象性、微观性和复杂性等特点,并且该内容对学生的空间想象能力和立体几何知识要求较高,因此教师在进行讲授时很费力。2017版课标提出教师可以借助实物模型、计算机软件模拟和视频等多种直观手段,降低教学内容的抽象性,促进学生对相
视觉目标跟踪是计算机视觉领域中的重要研究方向之一,它被广泛应用在很多领域,其中主要应用在视频监控、自动驾驶和军事指导等领域当中。在当前主要以孪生网络作为发展的目标跟踪方法当中,候选目标区域中推荐的质量显得十分关键。模型更新问题也成为相应目标跟踪方法中的重要研究内容。当前跟踪方法大多数都是采用锚点固定作为推荐的一种方式,该方式所生成的候选区域数量都是非常庞大的,但是质量并非很高。并且在孪生网络中,目
基于皮尔逊相关系数的决策树(PCCDT)算法是决策树领域的一种贪婪型算法。其广泛应用于模式识别和信息检索领域,能够帮助医疗机构更精准地对病人进行诊断,帮助企业或个人更好地做出决策等。然而,当数据集中包含个人敏感信息(如病人的诊断信息,顾客的购物信息等),在决策树使用过程中遭到具有一定背景知识的恶意用户攻击时,个人的隐私安全就会受到威胁。如何在决策树使用过程中对敏感信息进行保护,同时又能保证决策树的
随着互联网的迅速发展,网络上存在的信息呈指数级增长,用户从这些海量而复杂的数据中筛选自己感兴趣的内容的难度也随之增加。推荐系统作为一种有效的信息过滤工具,得到了广泛的应用,它的目的是准确地预测用户对物品或信息的偏好程度,从而把对用户更有价值的内容优先呈现给他们,帮助用户做出快速的决策。协同过滤在推荐算法中被广泛应用,它是基于相似用户具有相似偏好的假设进行推荐的,但是当用户的历史评分数据很少或没有评