论文部分内容阅读
磨矿分级作业是选矿生产过程中至关重要的环节,磨矿粒度的好坏直接影响到浮选的精矿品位和回收率;通过分析实际磨矿过程的生产状况和基本的生产数据,磨矿粒度存在在线检测成本高、滞后时间长、实现困难等问题;在分析RBF神经网络结构特点的基础上,提出用RBF网络建立磨矿粒度预测模型,网络中心的选取采用可以在线学习的最近邻聚类算法;仿真结果表明,该网络非线性处理能力和逼近能力强,学习时间短,网络运算速度快,模型精度满足工艺要求。