论文部分内容阅读
提出一种基于在线归档技术的新型多目标粒子群优化算法.使用外部集归档,在归档粒子中采用适应值共享技术选出全局最优位置,使得种群多样性得以维持;在粒子群的进化过程中,使用在线归档策略,将归档的粒子合理地引入下一代的种群,淘汰原种群中的不良粒子,从而保证进化过程中种群的优良性.用Zitzler的两个多目标测试函数评价算法的性能.结果表明,该算法能快速收敛到Pareto非劣最优目标域,并且解集沿着Pareto非劣最优目标域有很好的扩展性.