基于平铺数据流的可配置神经网络加速器

来源 :计算机工程与科学 | 被引量 : 0次 | 上传用户:zqs656690
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
卷积神经网络已经是公认最好的用于深度学习的算法,被广泛地应用于图像识别、自动翻译和广告推荐。由于神经网络结构规模的逐渐增大,使其具有大量的神经元和突触,所以,使用专用加速硬件挖掘神经网络的并行性已经成为了热门的选择。在硬件设计中,经典的平铺结构实现了很高的性能,但是平铺结构的单元利用率很低。目前,随着众多深度学习应用对硬件性能要求的逐渐提高,加速器对单元利用率也具有越来越严格的要求。为了在平铺数据流结构上获得更高的单元利用率,可以调换并行的顺序,采用并行输入特征图和输出通道的方式来提高计算的并行性。但是,
其他文献
针对成都市郫都区友爱镇农科村"有限责任公司+农户"作价出资(入股)模式下的农村集体经营性建设用地使用权流转工作情况进行总结,分析其现实运作机制和成效,对试点工作取得的