论文部分内容阅读
针对目前SLAM算法实时性和鲁棒性的问题,提出了一种改进的实时单目视觉SLAM算法。该算法采用一个摄像头作为外部传感器来提取机器人行进过程中周围环境的特征信息,用实时性良好的FAST提取环境特征点,结合逆深度参数化进行特征点非延时初始化,用压缩扩展卡尔曼滤波更新地图。实验研究表明,该方法提高了算法的鲁棒性和实时性。