论文部分内容阅读
为解决传统K-Means算法以及它的变种会产生较大波动的聚类结果的问题,使用改进的模拟退火算法来优化初始中心,得到一种适合对文本数据聚类分析的算法.把改进的模拟退火算法和K-Means算法结合在一起,从而达到既能发挥模拟退火算法的全局寻优能力,又可以兼顾K-Means的局部寻优能力,较好地克服了K-Means对初始化敏感、容易陷入局部最优的缺点.实验证明,该算法可以生成质量较高而且聚类质量波动性较小的结果.