论文部分内容阅读
从控制模型结构复杂性及提高模型辨识精度出发,提出了建模由参数或测量不确定性引起的最优上边界回归模型的一种新方法.首先,将二次规划的支持向量回归(SVR,support vector regression)转化为l1范数的优化问题,用于获取模型结构的稀疏解;其次,建立上边界回归模型的约束条件,并将模型的被估输出与实际输出之间的所有逼近误差最小化,即逼近误差的l1范数最小化问题,来提高模型辨识精度;最后,将l1范数的结构风险与逼近误差的l1范数以及上边界回归模型约束条件相结合构成新的优化问题,应用较简单的线性