论文部分内容阅读
在信号的稀疏表示方法中,传统的基于变换基的稀疏逼近不能自适应性地提取图像的纹理特征,而基于过完备字典的稀疏逼近算法复杂度过高。针对该问题,文章提出了一种基于小波变换稀疏字典优化的图像稀疏表示方法。该算法在图像小波变换的基础上构建图像过完备字典,利用同一场景图像的小波变换在纹理上具有内部和外部相似的属性,对过完备字典进行灰色关联度的分类,有效提高了图像表示的稀疏性。将该新算法应用于图像信号进行稀疏表示,以及基于压缩感知理论的图像采样和重建实验,结果表明新算法总体上提升了重建图像的峰值信噪比与结构相似度