论文部分内容阅读
为改善传统个性化推荐算法精准度不高的问题,使用评论数据作为数据集,先对评论数据做文本预处理和特征提取,然后使用LDA主题模型对文本特征数据建模,得到主题词分布,将其作为标签,同时使用LSTM网络做文本分类,通过计算得到好评率。最后把用户需求和标签利用潜在语义标引计算相似度,根据相似度和好评率大小向用户推荐结果。实验结果表明,该方法能够向用户推荐符合其兴趣的个性化需求信息,且准确率高于96%,证明了该推荐算法的有效性。