论文部分内容阅读
[摘要]数学思想方法是对数学本质的认识,是数学知识的精髓。而数学方法论给教师在数学教学中提供了理论指导,通过对它的学习有利于教师由“经验型教学”转向“理论指导下的自觉实践”,以数学思维方法的分析去带动和促进具体数学知识内容的教学。
[關键词]数学方法论思想方法数学教学
数学方法论主要是研究和讨论数学的发展规律、数学的思想方法以及数学中的发现、发明与创造等法则的一门新兴学科。数学方法论很大程度上可以被说成对于数学思想(维)方法的研究,其目标就是帮助人们学会数学的思维。
1、数学方法论对数学教学的意义
1.1 数学课程目标改革的必然要求
目前数学课程改革,强调情感、态度、价值观,强调数学学习的“过程与方法”,强调探究与发现。在这种理念下,要使数学新课程改得以有效的实施,教师就必须加强和重视数学方法的学习和研究,只有掌握了数学方法论的教师,才能培养出具有创新能力的学生。
1.2 数学课堂教学现代化的改革要求
现在的数学课堂不在是单纯的“传授式”教学,在新课标中明确指出:“学生是数学学习的主人,教师是数学学习的组织者、引导者和合作者。”意在进一步改变数学的教学模式,拓宽学生在数学教学活动中的空间,关注学生数学素养的提高。这一教学理论为我们从更深的层次认识数学教学提供了理论依据,值得我们去深入学习研究。因此,为了让教师更好适应和驾驭课堂教学,必须掌握一定的数学方法论。
1.3 数学教师专业化发展的客观要求
对于从事数学教学的教师,不能不懂得数学发现的原理、规则和思想方法,它们能使我们在数学教学中更好地驾驭教材,把数学教学变得更为生动,教出方法、教出发现、教出创新。因此,数学方法论是数学教师专业发展及自身成长的必备知识。
2、数学方法论在数学教学中的实践应用
2.1 数学方法论在解题教学中应用
必要的知识与知识的良好的组织是数学方法论中提及的四要素之一。记得数学大师波利亚曾说过:“良好的组织使得所提供的知识易于用上,这甚至可能比知识的广泛性更为重要。至少在有些情况下,知识太多可能反而成了累赘,可能会妨碍解题者看出一条简单的途径,而良好的组织则有利而无弊。”例如现在的初三复习很大程度上是通过解题教学来实现知识巩固,同时题目的综合性较强,需要学生对于题目有一个很好的认识。在教学中通常会碰到学生对于这类题目会无从下手,或解决问题的信心不够等现象。当然这里有学生对于题目理解上的原因,关键还是他们没有把自己的经验和知识良好的组织起来,必要的反思把知识方法归类。对于初三的学生知识容量应该是够的,但是他们的知识仓库比较零乱,当需要去解决某些问题的时候往往找不到对应的“工具”。所以在初三复习中的重点我们不是多讲几个题目、多做几个练习,而应通过典型例题理清知识体系,优化知识结构。
为了让学生能形成良好的知识结构,教师在问题解决过程中应更多的暴露思维过程,通过问题的合理设置激活学生原有的知识经验,启发他们形成新的理解、新的认识。因此数学课堂教学有效开展离不开教师的合理引导,教学中突出以问题为主线,启迪学生思考,使学生在课堂中深刻的感受如何发现问题、提出问题、分析问题、解决问题的整个过程,理解和认识发生和发展的必然的因果关系,从而领悟到分析、思考和解决问题的数学思想方法,最终内化为自身知识结构的重要部分。
2.2 数学方法论在概念教学中应用
每一个概念的产生,都是由于知识体系扩充的需要。在教学过程中,要让学生明白为什么要产生这个概念,它有什么意义,这个概念的产生是为了解决什么问题。让学生理解概念产生的必要性。
概念的形成有两种途径:一种是直接从客观事物的空间形式或数量关系的反映而得到的,另一种是在已有数学概念的基础上,经过多层次的抽象概括而成。在教学过程中,要擅于启发学生去发现、探究新概念,提高学生学习数学的兴趣。而概念的形成本身有着一定的发展过程,凝聚着前人探索的智慧。我们不可能重复历史的“原始创造”,而应根据学生自己的体验,用自己的思维方式,重新创造出有关的数学知识,这对学生理解概念非常有意义的。一位数学家说过:“一堆没有亲身体验和视觉形象所支持的概念、定义不能开发智力,而只能关闭思路。’,在概念再创造过程种,应对学生的思维给予暴露的机会,充分经历概念形成的两个阶段,从具体到抽象,再从抽象到具体,有利于学生对概念的自我意识和自我反省。
在浙教版七年级图形的初步知识7.2节中,直线公理:经过两点有且仅有一条直线。即两点确定一条直线。这对于学生来说比较抽象,特别是“有且仅有”这里包含了存在性和唯一性两层含义。为了让学生理解这条公理,我设计了一个学生活动环节:
首先随机请一位学生甲起立,要求与学生甲在同一直线的学生也起立。刚开始只有学生甲周围的其他人起立,突然一位学生说:“全班起立!”,顿时所有的学生都起来了。学生发现大家都和站起的那位学生在同一直线。这一活动让学生体验了一点无法确定一条直线,而是有无数条,因为任何一名学生与学生甲都能构成一条直线。然后我随机的教了两位学生乙、丙,要求和他们在同一直线的学生起立。这时学生发现无论这两位同学在哪个位子,站起的学生都只有一列。从而在活动中让学生真正体验了“两点确定一条直线”的含义,学生亲身经历了概念的“理性重建”对它的理解将会更加的深刻,何谓“有且仅有”也形成了学生自己的经验体会。概念是从生活中抽象而来,同样概念也运用于实际。最后环节要求学生找找生活中运用直线公理的例子,从而加深、丰富和巩固学生对数学概念的掌握和应用。
3、数学方法论在教学实践中注意的问题
数学方法论是一门实践性的学科,它在教学实践中主要体现在数学思想方法的教学和数学思维的培养。教学中重视如何能将所学到的各种方法和策略应用到实际的数学活动中去,包括以数学思维方法的分析去带动和促进具体数学知识内容的教学。因此我们要特别注重以下几个问题:一是注重渗透的循序渐进和逐步积累;二是关注学生最近发展区和层次性
三是提高教师的自身认识和可行性。
4、启示与思考
数学方法论的教学实践,有利于提高教师的专业素质。由“经验型教学”转向“理论指导下的自觉实践”,这需要教师不断充实自己的知识结构,提高自身的施教水平,通过理论指导和教学实践逐渐形成有个性的教学方法和教学理念,同时教师的专业成长离不开自己的反思活动。教师的实践和反思是有机结合的,是相辅相成的。通过教师的教学活动可以让教师获得丰富的教学经验,同时通过反思在真实的教学情景中改进实践。美国一位学者提出了教师成长公式:经验+反思=成长,可见实践与反思是教师积累教育教学经验,提高教学素养的有效方法。在数学方法论的实践和反思中我们也应看到了它存在的一些局限性,绝大部分数学方法论的研究偏重于理论论证,而很少有实践证明,更少研究在中学数学教学中渗透和应用。因为教学理论更多的是追求普遍和一般,而实践更多地体现为个别和特殊。所以我们在数学方法论的实践应用中还需有自己的反思和改进,把理论内化为自己的观念,正真发挥理论指导实践、改造实践的力量。
参考文献
[1]郑毓信,《数学方法论入门》浙江教育出版社2008
[2]李玮,《应重视和加强数学教育理论研究》数学教育学报2006,1
[關键词]数学方法论思想方法数学教学
数学方法论主要是研究和讨论数学的发展规律、数学的思想方法以及数学中的发现、发明与创造等法则的一门新兴学科。数学方法论很大程度上可以被说成对于数学思想(维)方法的研究,其目标就是帮助人们学会数学的思维。
1、数学方法论对数学教学的意义
1.1 数学课程目标改革的必然要求
目前数学课程改革,强调情感、态度、价值观,强调数学学习的“过程与方法”,强调探究与发现。在这种理念下,要使数学新课程改得以有效的实施,教师就必须加强和重视数学方法的学习和研究,只有掌握了数学方法论的教师,才能培养出具有创新能力的学生。
1.2 数学课堂教学现代化的改革要求
现在的数学课堂不在是单纯的“传授式”教学,在新课标中明确指出:“学生是数学学习的主人,教师是数学学习的组织者、引导者和合作者。”意在进一步改变数学的教学模式,拓宽学生在数学教学活动中的空间,关注学生数学素养的提高。这一教学理论为我们从更深的层次认识数学教学提供了理论依据,值得我们去深入学习研究。因此,为了让教师更好适应和驾驭课堂教学,必须掌握一定的数学方法论。
1.3 数学教师专业化发展的客观要求
对于从事数学教学的教师,不能不懂得数学发现的原理、规则和思想方法,它们能使我们在数学教学中更好地驾驭教材,把数学教学变得更为生动,教出方法、教出发现、教出创新。因此,数学方法论是数学教师专业发展及自身成长的必备知识。
2、数学方法论在数学教学中的实践应用
2.1 数学方法论在解题教学中应用
必要的知识与知识的良好的组织是数学方法论中提及的四要素之一。记得数学大师波利亚曾说过:“良好的组织使得所提供的知识易于用上,这甚至可能比知识的广泛性更为重要。至少在有些情况下,知识太多可能反而成了累赘,可能会妨碍解题者看出一条简单的途径,而良好的组织则有利而无弊。”例如现在的初三复习很大程度上是通过解题教学来实现知识巩固,同时题目的综合性较强,需要学生对于题目有一个很好的认识。在教学中通常会碰到学生对于这类题目会无从下手,或解决问题的信心不够等现象。当然这里有学生对于题目理解上的原因,关键还是他们没有把自己的经验和知识良好的组织起来,必要的反思把知识方法归类。对于初三的学生知识容量应该是够的,但是他们的知识仓库比较零乱,当需要去解决某些问题的时候往往找不到对应的“工具”。所以在初三复习中的重点我们不是多讲几个题目、多做几个练习,而应通过典型例题理清知识体系,优化知识结构。
为了让学生能形成良好的知识结构,教师在问题解决过程中应更多的暴露思维过程,通过问题的合理设置激活学生原有的知识经验,启发他们形成新的理解、新的认识。因此数学课堂教学有效开展离不开教师的合理引导,教学中突出以问题为主线,启迪学生思考,使学生在课堂中深刻的感受如何发现问题、提出问题、分析问题、解决问题的整个过程,理解和认识发生和发展的必然的因果关系,从而领悟到分析、思考和解决问题的数学思想方法,最终内化为自身知识结构的重要部分。
2.2 数学方法论在概念教学中应用
每一个概念的产生,都是由于知识体系扩充的需要。在教学过程中,要让学生明白为什么要产生这个概念,它有什么意义,这个概念的产生是为了解决什么问题。让学生理解概念产生的必要性。
概念的形成有两种途径:一种是直接从客观事物的空间形式或数量关系的反映而得到的,另一种是在已有数学概念的基础上,经过多层次的抽象概括而成。在教学过程中,要擅于启发学生去发现、探究新概念,提高学生学习数学的兴趣。而概念的形成本身有着一定的发展过程,凝聚着前人探索的智慧。我们不可能重复历史的“原始创造”,而应根据学生自己的体验,用自己的思维方式,重新创造出有关的数学知识,这对学生理解概念非常有意义的。一位数学家说过:“一堆没有亲身体验和视觉形象所支持的概念、定义不能开发智力,而只能关闭思路。’,在概念再创造过程种,应对学生的思维给予暴露的机会,充分经历概念形成的两个阶段,从具体到抽象,再从抽象到具体,有利于学生对概念的自我意识和自我反省。
在浙教版七年级图形的初步知识7.2节中,直线公理:经过两点有且仅有一条直线。即两点确定一条直线。这对于学生来说比较抽象,特别是“有且仅有”这里包含了存在性和唯一性两层含义。为了让学生理解这条公理,我设计了一个学生活动环节:
首先随机请一位学生甲起立,要求与学生甲在同一直线的学生也起立。刚开始只有学生甲周围的其他人起立,突然一位学生说:“全班起立!”,顿时所有的学生都起来了。学生发现大家都和站起的那位学生在同一直线。这一活动让学生体验了一点无法确定一条直线,而是有无数条,因为任何一名学生与学生甲都能构成一条直线。然后我随机的教了两位学生乙、丙,要求和他们在同一直线的学生起立。这时学生发现无论这两位同学在哪个位子,站起的学生都只有一列。从而在活动中让学生真正体验了“两点确定一条直线”的含义,学生亲身经历了概念的“理性重建”对它的理解将会更加的深刻,何谓“有且仅有”也形成了学生自己的经验体会。概念是从生活中抽象而来,同样概念也运用于实际。最后环节要求学生找找生活中运用直线公理的例子,从而加深、丰富和巩固学生对数学概念的掌握和应用。
3、数学方法论在教学实践中注意的问题
数学方法论是一门实践性的学科,它在教学实践中主要体现在数学思想方法的教学和数学思维的培养。教学中重视如何能将所学到的各种方法和策略应用到实际的数学活动中去,包括以数学思维方法的分析去带动和促进具体数学知识内容的教学。因此我们要特别注重以下几个问题:一是注重渗透的循序渐进和逐步积累;二是关注学生最近发展区和层次性
三是提高教师的自身认识和可行性。
4、启示与思考
数学方法论的教学实践,有利于提高教师的专业素质。由“经验型教学”转向“理论指导下的自觉实践”,这需要教师不断充实自己的知识结构,提高自身的施教水平,通过理论指导和教学实践逐渐形成有个性的教学方法和教学理念,同时教师的专业成长离不开自己的反思活动。教师的实践和反思是有机结合的,是相辅相成的。通过教师的教学活动可以让教师获得丰富的教学经验,同时通过反思在真实的教学情景中改进实践。美国一位学者提出了教师成长公式:经验+反思=成长,可见实践与反思是教师积累教育教学经验,提高教学素养的有效方法。在数学方法论的实践和反思中我们也应看到了它存在的一些局限性,绝大部分数学方法论的研究偏重于理论论证,而很少有实践证明,更少研究在中学数学教学中渗透和应用。因为教学理论更多的是追求普遍和一般,而实践更多地体现为个别和特殊。所以我们在数学方法论的实践应用中还需有自己的反思和改进,把理论内化为自己的观念,正真发挥理论指导实践、改造实践的力量。
参考文献
[1]郑毓信,《数学方法论入门》浙江教育出版社2008
[2]李玮,《应重视和加强数学教育理论研究》数学教育学报2006,1