论文部分内容阅读
1 问题提出
题1 (2008年江苏)在场强为B的水平匀强磁场中,一质量为m、带正电q的小球在O点静止释放,小球的运动曲线如图1所示.已知此曲线在最低点的曲率半径为该点到x轴距离的2倍,重力加速度为g.求:
[TP11GW183.TIF,Y#]
(1)小球运动到任意位置P(x,y)的速率v;
(2)小球在运动过程中第一次下降的最大距离ym;
(3)当在上述磁场中加一竖直向上场强为E(E>mg/q)的匀强电场时,小球从O点静止释放后获得的最大速率vm.
解析 (2)设在最大距离ym处的速率为vm,根据牛顿第二定律有
问题1 题设条件“已知此曲线在最低点的曲率半径为该点到x轴距离的2倍”是如何得出的?
题2 (2013年福建) 如图2甲,空间存在-范围足够大的垂直于xOy平面向外的匀强磁场,磁感应强度大小为B.让质量为m,电量为q(q<0)的粒子从坐标原点O沿加xOy平面以不同的初速度大小和方向入射到该磁场中.不计重力和粒子间的影响.
(1)若粒子以初速度v1沿y轴正向入射,恰好能经过x轴上的A(a,0)点,求v1的大小;
(2)已知一粒子的初速度大小为v(v>v1).为使该粒子能经过A(a,0)点,其入射角θ(粒子初速度与x轴正向的夹角)有几个?并求出对应的sinθ值;
(3)如图2乙,若在此空间再加入沿y轴正向、大小为E的匀强电场,一粒子从O点以初速度v0沿x轴正向发射.研究表明:粒子在xOy平面内做周期性运动,且在任一时刻,粒子速度的x分量vx与其所在位置的y坐标成正比,比例系数与场强大小E无关.求该粒子运动过程中的最大速度值vm.
题1 (2008年江苏)在场强为B的水平匀强磁场中,一质量为m、带正电q的小球在O点静止释放,小球的运动曲线如图1所示.已知此曲线在最低点的曲率半径为该点到x轴距离的2倍,重力加速度为g.求:
[TP11GW183.TIF,Y#]
(1)小球运动到任意位置P(x,y)的速率v;
(2)小球在运动过程中第一次下降的最大距离ym;
(3)当在上述磁场中加一竖直向上场强为E(E>mg/q)的匀强电场时,小球从O点静止释放后获得的最大速率vm.
解析 (2)设在最大距离ym处的速率为vm,根据牛顿第二定律有
问题1 题设条件“已知此曲线在最低点的曲率半径为该点到x轴距离的2倍”是如何得出的?
题2 (2013年福建) 如图2甲,空间存在-范围足够大的垂直于xOy平面向外的匀强磁场,磁感应强度大小为B.让质量为m,电量为q(q<0)的粒子从坐标原点O沿加xOy平面以不同的初速度大小和方向入射到该磁场中.不计重力和粒子间的影响.
(1)若粒子以初速度v1沿y轴正向入射,恰好能经过x轴上的A(a,0)点,求v1的大小;
(2)已知一粒子的初速度大小为v(v>v1).为使该粒子能经过A(a,0)点,其入射角θ(粒子初速度与x轴正向的夹角)有几个?并求出对应的sinθ值;
(3)如图2乙,若在此空间再加入沿y轴正向、大小为E的匀强电场,一粒子从O点以初速度v0沿x轴正向发射.研究表明:粒子在xOy平面内做周期性运动,且在任一时刻,粒子速度的x分量vx与其所在位置的y坐标成正比,比例系数与场强大小E无关.求该粒子运动过程中的最大速度值vm.