基于神经网络分析法的肺磨玻璃密度结节侵袭性CT分析预测模型研究

来源 :临床放射学杂志 | 被引量 : 0次 | 上传用户:zkteacher
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
目的利用神经网络分析法构建肺磨玻璃密度结节(GGN)侵袭性的CT预测模型,探讨其预测的准确性。方法回顾性分析203例经手术病理证实为肺腺癌的肺GGN的CT影像特征。采集患者基本信息,统计肺结节密度(纯磨玻璃结节或混合磨玻璃结节)、是否含有内核、大小、实性成分比例;采用评分法对空泡征、胸膜牵拉征、血管集束征三个影像特征进行量化评分,利用单因素方差分析各CT特征在不同病理分组间的差异,利用神经网络法将病例随机分为培训组(103例)和检验组(100例),建立各CT特征与GGN病理之间的预测模型。结果203例肺GGN中AAH 20例,AIS 26例,MIA 74例,I-ADC 83例。四组病理类型间的结节性质、直径、实性成分比例以及三个影像特征通过单因素方差分析均存在显著性差异(P<0.05)。基于此数据而使用神经网络的“多层感知器”(MLP)建立预测模型。培训组总体预测准确率为80.6%(AAH 92.9%,AIS 38.5%,MIA 91.2%,I-ADC81.0%)检验组预测总体准确率为72.0%(AAH 50.0%,AIS 46.2%,MIA 72.5%,I-ADC 82.9%),各自变量在模型中的重要性WTMW/WTLW(0.270,100%),影像特征评分(0.263,97.6%),WTMW(0.099,36.7%),WTLW(0.097,36.0%),胸膜牵拉征(0.085,31.5%),血管集束征(0.084,31.0%),空泡征(0.051,18.8%),内核(0.027,9.9%),结节密度(0.025,9.4%)。结论基于神经网络建立的GGN侵袭性CT预测模型可用于GGN病理侵袭性评估。 Objective To construct an invasive CT predictive model of lung-worn glass density nodules (GGN) by using neural network analysis and investigate its accuracy. Methods The CT features of lung GGN in 203 patients with lung adenocarcinoma confirmed by pathology were retrospectively analyzed. The basic information of the patients was collected, and the density of pulmonary nodules (purely ground glass nodules or mixed ground glass nodules) was counted, and the proportion of kernel, size and solid component was counted. The scoring method was used to evaluate the characteristics of vacuole, pleural traction, The three imaging features were quantified. One-way analysis of variance (ANOVA) was used to analyze the differences of CT features among different pathological groups. The cases were divided into training group (n = 103) and testing group (n = 100) Prediction model between CT features and GGN pathology. Results In the 203 cases of lung GGN, 20 cases were AAH, 26 cases were AIS, 74 cases were MIA and 83 cases were I-ADC. There was a significant difference (P <0.05) in nodule quality, diameter, proportion of solid components and three image features among four groups by one-way ANOVA. Based on this data, a predictive model was built using the Neural Layer’s “Multilayer Perceptron” (MLP). The overall prediction accuracy of the training group was 72.0% (AAH 50.0%, AIS 46.2%, MIA 72.5%) with the overall prediction accuracy of 80.6% (AAH 92.9%, AIS 38.5%, MIA 91.2%, and I-ADC 81.0% , I-ADC 82.9%), the importance of each variable in the model WTMW / WTLW (0.270, 100%), imaging feature score , Pleural traction sign (0.085, 31.5%), vascular bundle sign (0.084, 31.0%), vacuole sign (0.051, 18.8% . Conclusion The GGN invasive CT prediction model based on neural network can be used to assess the pathological invasion of GGN.
其他文献
一、爱国主义教育误区扫描1.空话套话,虚无缥缈。教师在阅读教学中每每学到跟中国近代屈辱历史相关的课文时,总会不知不觉地往悲情的路上走,然后生搬硬套、强行灌输为“中华
[目的]探讨应用护理程序对泌尿系结石病人进行健康教育的效果.[方法]将480例病人随机分为两组.时照组进行一般的健康知识宣教,教育组按整体护理程序对病人实施健康教育.[结果
引言:金砖国家(巴西、俄罗斯、印度、中国、南非)的出口在过去一到两个季度都呈现下降的趋势。文章通过分析最新的《全球贸易预警报告》,认为外在贸易扭曲正在阻碍金砖国家的
本文对我国知识密集型企业存在的一种员工被动边缘化现象进行了界定与分析,发现这种因非主营业务从业人员的职业发展通道问题而产生的被动边缘化现象,降低了这部分员工的组织
期刊
2011年湖南省长沙市中考作文题rn二选一:rn作文(一):给自己一个拥抱rn作文(二):每个人都有自己的个性,个性也可以说是自己的一张名片。例如,豪迈奔放是苏轼的名片,婉约清丽是李清照的名
7月28~31日,新一轮《跨太平洋战略经济伙伴协定》(TPP)谈判部长级会议在毛伊岛召开。尽管在环境和其他问题等关键章节的解决方案上达成了一致,但是签署TPP协议这一目标还是未
为探究吕家坨井田地质构造格局,根据钻孔勘探资料,采用分形理论和趋势面分析方法,研究了井田7
期刊
7月31日,世贸组织贸易谈判委员会举行第37次正式会议,阿泽维多总干事在会上宣布,由于各成员在核心问题上分歧悬殊,无法按照巴厘岛部长授权要求达成一份详细的“后巴厘”工作
胃肠手术后病人由于麻醉和手术刺激,伤口疼痛不愿意活动而易引起腹胀,不利于伤口愈合及身体恢复,什么时候实施健康教育既能让病人理解其意义,又能调动病人积极性,主动配合治