论文部分内容阅读
在进行禽蛋无损检测研究时,需要花费大量的人力和物力采集禽蛋图像数据,为解决该问题,设计了一种基于深度卷积生成对抗网络(Deep convolutional generative adversarial networks,DCGAN)的改进禽蛋图像数据生成网络。该网络分为生成器与判别器,生成器用于禽蛋图像数据生成,判别器对生成的禽蛋图像进行真实性判断,两者相互对抗最终生成高质量的禽蛋图像数据。为了提高生成的禽蛋图像质量,使用残差网络构建生成器和判别器,引入Wasserstein距离和加梯度惩罚的损失函