论文部分内容阅读
针对多变量输出误差系统的模型辨识问题,借助辅助模型思想推导出其随机梯度辨识算法;由于该算法的收敛速度慢,为了提高收敛速度,将算法中的新息向量扩展成新息矩阵,得到基于辅助模型的多新息随机梯度辨识算法;辅助模型多新息算法使用新息矩阵对参数进行校正估计,该新息矩阵不仅包含了当前时刻的新息向量,还包含过去多个时刻的新息向量,因而,与辅助模型随机梯度算法和增广随机梯度算法相比,该算法具有更快的收敛速度;一个二输入二输出的仿真例子证明了所提出的算法的确具有更快的收敛速度。