论文部分内容阅读
该文将描述瞬时投放示踪剂、一维稳定流场二维非稳定水动力弥散过程中的示踪剂浓度在时空上变化的解析解进行了对数变换 ,得到一直线方程。根据方程中的自变量与因变量的相关系数应达到极值的原理 ,推导出了计算包在自变量中的地下水流速u的公式。在计算出u值之后 ,对试验数据进行适当变换 ,就可利用线性回归法计算直线常数 ,从而可计算出含水层的有效孔隙率ne,纵向与横向弥散度αL 与αT 等另外三个参数值。
In this paper, the analytic solution of instantaneous tracer and one-dimensional steady-state two-dimensional steady-state hydrodynamic dispersion of tracer concentration in space-time is described. The analytical solution is transformed logarithmically to obtain a straight line equation. According to the principle that the correlation coefficient of the dependent variable in the equation should reach the extreme value, the formula for calculating the groundwater flow rate u in the independent variable is deduced. After calculating the u value, the appropriate test data transformation, linear regression method can be used to calculate the linear constant, which can calculate the aquifer effective porosity ne, vertical and horizontal dispersion αL and αT other three parameters .